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Dust-acoustic rogue waves in non-thermal plasmas
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Abstract. The nonlinear propagation of dust-acoustic waves (DAWs) and associated dust-acoustic rogue waves
(DARWs), which are governed by the nonlinear Schrödinger equation, is theoretically investigated in a four-
component plasma medium containing inertial warm negatively charged dust grains and inertialess non-thermal
distributed electrons as well as isothermal positrons and ions. The modulationally stable and unstable parametric
regimes of DAWs are numerically studied for the plasma parameters. Furthermore, the effects of temperature ratios
of ion-to-electron and ion-to-positron, and the number density of ion and dust grains on the DARWs are investigated.
It is observed that physical parameters play very crucial roles in the formation of DARWs. These results may be
useful in understanding the electrostatic excitations in dusty plasmas in space and laboratory situations.
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1. Introduction

The research regarding the propagation of nonlinear
electrostatic perturbation in a four-component
electron-positron-ion-dust (FCEPID) plasma medium
(FCEPIDPM) has received great attention among the
plasma physicists due to the existence of FCEPID not
only in space plasmas, viz., the hot spots on dust rings
in the galactic centre [1–4], auroral zone [2], around
pulsars [3,5], interstellar medium [6], Milky Way [6],
accretion disks near neutron stars [6], Jupiter’s magne-
tosphere [7] but also in laboratory experiments. Many
researchers have studied dust-acoustic (DA) waves
(DAWs) [3–5], dust-ion-acoustic waves (DIAWs) [1,2]
and associated nonlinear structures in four-component
dusty plasma. The presence of positron drastically
changes the mechanism of the formation and propa-
gation of nonlinear electrostatic structures, viz., shock,
solitons [2], supersolitons [1,7], double layers (DLs) [2],
etc.

The existence of the non-thermal particles (viz.,
electrons [1,2,6,7], positrons [1,2], ions, etc.), which
rigorously changes the dynamics of the plasma medium
and the mechanism of the formation of various

electrostatic pulses in space plasmas has been confirmed
by the Viking [8] and Freja satellites [9]. Cairns et al
[10] investigated the electrostatic solitary structures in
a non-thermal plasma, and found that both negative and
positive density perturbations can exist in the presence
of non-thermal electrons. Paul et al [1] showed that
the existence of non-thermal electrons and positrons in
a FCEPID model supports the solitary waves of both
polarities. Banerjee and Maitra [2] studied DIAWs, i.e.,
solitons and DLs, in a FCEPIDPM having non-thermal
electrons and positrons and observed that the positive
potential cannot exist after a particular value of non-
thermal parameter (α).

The rogue waves (RWs), which appear due to the
modulational instability (MI) of the carrier waves, have
been observed in different branches of science, viz.,
oceanography [11], biology, optics [12], finance [13]
and plasma physics [14–17], and are also governed by
the nonlinear Schrödinger equation (NLSE) [14–17].
Chowdhury et al [15] examined the stability conditions
for the positron-acoustic waves (PAWs) in a multicom-
ponent plasma medium, and found that the critical wave
number (kc), which indicates the stable and unstable
parametric regimes of PAWs, reduces with the increase
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in the value of α. Kourakis and Shukla [16] studied the
MI of the DIAWs in a three-component plasma medium
and showed that the existence of the negative dust grains
reduces the value of kc. Rahman et al [17] reported the
stable and unstable domains in a dusty plasma medium
having non-thermal plasma species, and found that the
amplitude of the DARWs increases with non-thermality
of the plasma species.

Recently, Saberian et al [4] studied the DA soli-
tons and DLs in a FCEPIDPM. Esfandyari-Kalejahi et
al [5] investigated DA solitary waves (DASWs) in a
multicomponent dusty plasma in the presence of non-
thermal electrons, and found that the amplitude of the
DASWs increases with charge state of the negative
dust grains. Jehan et al [3] considered an unmagne-
tised FCEPIDPM having negatively charged massive
inertial dust grains, inertialess electrons, positrons and
ions for examining DASWs, and observed that the exis-
tence of positrons and their temperature can change the
sign of the nonlinear coefficient of the governing equa-
tion. The present paper is an extension of the work
of Jehan et al [3] by studying the MI of the DAWs
in an unmagnetised FCEPIDPM having non-thermal
electrons featuring Cairns’ distribution. This paper also
examines the nonlinear properties of DARWs.

The manuscript is organised as follows: The basic
governing equations of our plasma model are presented
in §2. The MI and RWs are presented in §4. Results
and discussion are provided in §5. The conclusion is
provided in §6.

2. Governing equations

We consider the propagation of DAWs in an unmag-
netised collisionless FCEPIDPM consisting of inertial
warm negatively charged massive dust grains (mass =
md; charge qd = −Zde) and inertialess non-thermal
Cairns’ distributed electrons (mass = me; charge qe =
−e) as well as isothermal positrons (mass mp; charge
qp = +e) and ions (mass mi; charge qi = +Z ie), where
Zd (Z i) is the number of electrons (protons) residing
on negatively (positively) charged massive dust grains
(ions). Overall, the charge neutrality condition for our
plasma model can be written as

ne0 + Zdnd0 = np0 + Z ini0.

Now, the basic set of normalised equations can be writ-
ten as

∂nd

∂t
+ ∂(ndud)

∂x
= 0, (1)

∂ud

∂t
+ ud

∂ud

∂x
+ σ1nd

∂nd

∂x
= ∂φ

∂x
, (2)

∂2φ

∂x2 = μene − (1 + μe − μi)np − μini + nd, (3)

where nd is the number density of warm dust grains
normalised by its equilibrium value nd0; ud is the
dust fluid speed normalised by the DA wave speed
Cd = (ZdkBTi/md)

1/2 (with Ti being the ion temper-
ature, md being the dust grain mass and kB being the
Boltzmann constant); φ is the electrostatic wave poten-
tial normalised by kBTi/e (with e being the magnitude
of single electron charge); the time and space vari-
ables are normalised by ω−1

pd = (md/4π Z2
de

2nd0)
1/2

and λDd = (kBTi/4π Zdnd0e2)1/2, respectively; Pd =
Pd0(Nd/nd0)

γ (with Pd0 being the equilibrium adia-
batic pressure of the dust and γ = (N +2)/N , where N
is the degree of freedom and for one-dimensional case,
N = 1 then γ = 3); Pd0 = nd0kBTd (with Td being the
temperature of the warm dust grain); and other plasma
parameters are: σ1 = 3Td/ZdTi, μe = ne0/Zdnd0 and
μi = Z ini0/Zdnd0. Now, the expression for the number
density of non-thermal electrons following the Cairns’
distribution [1,10] can be written as

ne = [1 − βσ2φ + βσ 2
2 φ2] exp(σ2φ), (4)

where σ2 = Ti/Te (Te being the temperature of the iso-
thermal electron) and β = 4α/(1+3α) with α being the
parameter determining the fast particles present in our
plasma model. Now, the expression for the number den-
sity of isothermal positrons following the Maxwellian
distribution can be written as [3]

np = exp(−σ3φ), (5)

where σ3 = Ti/Tp (Tp being the temperature of the iso-
thermal positrons). Now, the expression for the number
density of isothermal ions following the Maxwellian dis-
tribution can be written as [3]

ni = exp(−φ). (6)

Now, by substituting eqs (4)–(6) in eq. (3), and expand-
ing up to third order of φ, we get

∂2φ

∂x2 + 1 = nd + S1φ + S2φ
2 + S3φ

3 + · · · , (7)

where

S1 = (σ2 − βσ2 + σ3)μe + (1 − σ3)μi + σ3,

S2 = [(σ 2
2 − σ 2

3 )μe + (σ 2
3 − 1)μi − σ 2

3 ]/2,

S3 = [(3β + 1)μeσ
3
2 + μeσ

3
3 + (1 − σ 3

3 )μi + σ 3
3 ]/6.

The terms containing S1, S2 and S3 in the right-hand side
of eq. (7) are the contributions of inertialess electrons,
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positrons and ions. We note that eqs (1), (2) and (7)
now represent the basis set of normalised equations to
describe the nonlinear dynamics of the DAWs, and asso-
ciated DARWs in an unmagnetised FCEPIDPM under
consideration.

3. Derivation of the NLSE

To study the MI of the DAWs, we want to derive the
NLSE by employing the reductive perturbation method,
and for that case, first we can write the stretched co-
ordinates in the form [14–17]

ξ = ε(x − vgt), (8)

τ = ε2t, (9)

where vg is the group speed and ε is a small parameter.
Then we can write the dependent variables as

nd = 1 +
∞∑

m=1

εm
∞∑

l=−∞
n(m)
dl (ξ, τ ) exp[il(kx − ωt)],

(10)

ud =
∞∑

m=1

εm
∞∑

l=−∞
u(m)
dl (ξ, τ ) exp[il(kx − ωt)], (11)

φ =
∞∑

m=1

εm
∞∑

l=−∞
φ

(m)
l (ξ, τ ) exp[il(kx − ωt)], (12)

where k and ω are real variables representing the carrier
wave number and frequency, respectively. The deriva-
tive operators can be written as [14–17]

∂

∂t
→ ∂

∂t
− εvg

∂

∂ξ
+ ε2 ∂

∂τ
, (13)

∂

∂x
→ ∂

∂x
+ ε

∂

∂ξ
. (14)

Now, by substituting eqs (8)–(14) into eqs (1), (2) and
(7), and collecting the terms containing ε, the first-order
(m = 1 with l = 1) reduced equations can be written as

n(1)
d1 = k2

S
φ

(1)
1 , (15)

u(1)
d1 = kω

S
φ

(1)
1 , (16)

n(1)
d1 = −k2φ

(1)
1 − S1φ

(1)
1 , (17)

where S = σ1k2 − ω2. Hence these relations provide
the dispersion relation of DAWs

ω2 = σ1k
2 + k2

S1 + k2 . (18)

The second-order (m = 2 with l = 1) equations are
given by

n(2)
d1 = k2

S
φ

(2)
1 − 2ikω(vgk − ω)

S2

∂φ
(1)
1

∂ξ
, (19)

u(2)
d1 = kω

S
φ

(2)
1 − i(vgk − ω)(ω2 + σ1k2)

S2

∂φ
(1)
1

∂ξ
, (20)

with the compatibility condition

vg = ∂ω

∂k
= ω2 − S2

kω
. (21)

The coefficients of ε for m = 2 and l = 2 provide the
second-order harmonic amplitudes which are found to
be proportional to |φ(1)

1 |2

n(2)
d2 = S4|φ(1)

1 |2, (22)

u(2)
d2 = S5|φ(1)

1 |2, (23)

φ
(2)
2 = S6|φ(1)

1 |2, (24)

where

S4 = 2S6k2S2 − σ1k6 − 3ω2k4

2S3 ,

S5 = S4ωS2 − ωk4

kS2 ,

S6 = σ1k6 + 3ω2k4 − 2S2S3

6k2S3 .

Now, we consider the expression for m = 3 with l = 0
and m = 2 with l = 0, which leads the zeroth harmonic
modes. Thus, we obtain

n(2)
d0 = S7|φ(1)

1 |2, (25)

u(2)
d0 = S8|φ(1)

1 |2, (26)

φ
(2)
0 = S9|φ(1)

1 |2, (27)

where

S7 = S9S2 − σ1k4 − ω2k2 − 2ωvgk3

S2(σ1 − v2
g)

,

S8 = S7vgS2 − 2ωk3

S2 ,

S9 = 2ωvgk3 + σ1k4 + ω2k2 − 2S2S2(σ1 − v2
g)

S2(1 − S1v2
g + σ1S1)

.

Finally, the third harmonic modes (m = 3 and l = 1),
with the help of (15)–(27), give a set of equations, which
can be reduced to the following NLSE:

i
∂�

∂τ
+ P

∂2�

∂ξ2 + Q|�|2� = 0, (28)
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where � = φ
(1)
1 for simplicity. In eq. (28), the dispersion

coefficient P is given as

P = F1(vgk − ω) − S3

2ωk2S
,

where F1 = ω3 + 3ωσ1k2 − 3vgkω2 − vgσ1k3. Also in
eq. (28), the nonlinear coefficient Q is given as

Q = 2S2S2(S9 + S6) + 3S3S2 − F2

2ωk2 ,

where

F2 = (k4σ1 + ω2k2)(S4 + S7) + 2ωk3(S5 + S8).

The space and time evolution of the DAWs in an
unmagnetised FCEPIDPM are directly governed by the
coefficients P and Q, and indirectly governed by dif-
ferent plasma parameters such as α, μi, μe, σ1, σ2, σ3
and k. Thus, these plasma parameters significantly affect
the stability conditions of the DAWs in an unmagnetised
FCEPIDPM.

4. Modulational instability and rogue waves

The stable and unstable parametric regimes of DAWs are
organised by the sign of P and Q of eq. (28) [14–20].
When P and Q have the same sign (i.e., P/Q > 0),
the evolution of the DAWs amplitude is modulation-
ally unstable in the presence of external perturbations.
On the other hand, when P and Q have opposite signs
(i.e., P/Q < 0), the DAWs are modulationally stable in
the presence of external perturbations. The plot of P/Q
against k yields stable and unstable parametric regimes
of the DAWs. The point, at which the transition of P/Q
curve intersects with the k-axis, is known as the thresh-
old or critical wave number k (= kc) [14–20].

The governing equation for highly energetic DARWs
in the modulationally unstable parametric regime (P/

Q > 0) can be written as [21,22]

�(ξ, τ)

=
√

2P

Q

[
4(1 + 4i Pτ)

1 + 16P2τ 2 + 4ξ2 − 1

]
exp(2i Pτ).

(29)

Equation (29) describes that a large amount of wave
energy, which causes due to the nonlinear characteristics
of the plasma medium, is localised into a comparatively
small area in space.

Figure 1. Plot of P/Q vs. k for different values of α when
μe = 0.5, μi = 0.7, σ1 = 0.003, σ2 = 0.4 and σ3 = 0.5.

Figure 2. Plot of P/Q vs. k for different values of μe when
α = 0.6, μi = 0.7, σ1 = 0.003, σ2 = 0.4 and σ3 = 0.5.

Figure 3. Plot of P/Q vs. k for different values of σ2 when
α = 0.6, μe = 0.5, μi = 0.7, σ1 = 0.003 and σ3 = 0.5.

5. Results and discussion

We have numerically analysed the stable and unstable
parametric regimes of DAWs in figures 1–3. The effects
of non-thermality of the electrons in organising the sta-
ble and unstable parametric regimes of the DAWs can be
seen in figure 1 which indicates that kc as well as mod-
ulationally stable parametric regime of DAWs decrease
with the increase in the value of α, and this result is
in good agreement with the result of ref. [15]. So, the
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Figure 4. Plot of |�| vs. ξ for different values of μi when
k = 1.7, τ = 0, α = 0.6, μe = 0.5, σ1 = 0.003, σ2 = 0.4
and σ3 = 0.5.

DAWs become modulationally unstable for small values
of k for excess non-thermality of the plasma species.

Figure 2 indicates that the presence of non-thermal
electrons and negatively charged warm dust grains can
significantly modify the stability conditions of DAWs
in an unmagnetised FCEPIDPM. It is clear from this
figure that (a) when μe = 0.3, 0.5 and 0.7 then the
corresponding kc ≡ 1.4 (dotted blue curve), kc ≡ 1.5
(dashed green curve) and kc ≡ 1.6 (solid red curve); (b)
the critical value increases with the increase in the value
of μe; (c) the modulationally stable (unstable) paramet-
ric regime of DAWs increases with an increase in the
value of electron (dust) number density for a constant
value of the charge state of negative dust grains (via μe).

The effects of ion to electron temperature (via σ2)
on the stable and unstable parametric regimes can be
observed in figure 3, and it is clear from this figure
that (a) kc increases with σ2; (b) the modulationally sta-
ble parametric regime increases with ion temperature
while decreases with electron temperature. So, the tem-
perature of the electron and the ion plays an opposite
role in recognising the modulationally stable and unsta-
ble parametric regimes of DAWs in an unmagnetised
FCEPIDPM.

We have numerically analysed eq. (29) in figures
4 and 5 to understand the nonlinear property of the
FCEPIDPM as well as the mechanism of the formation
of DARWs associated with DAWs in the modulation-
ally unstable parametric regime. Figure 4 indicates that
(a) the amplitude and width of the DARWs increase
with an increase in the value of μi; (b) the nonlin-
earity, which organises the shape of the DARWs, of
the plasma medium increases with an increase in the
value of ion number density whereas the nonlinearity
of the plasma medium decreases with dust number den-
sity when their charge states remain constant. Figure 5
indicates the temperature effects of ion and electron
(via σ3) on the generation of DARWs in FCEPIDPM.

Figure 5. Plot of |�| vs. ξ for different values of σ3 when
k = 1.7, τ = 0, α = 0.6, μe = 0.5, μi = 0.7, σ1 = 0.003
and σ2 = 0.4.

The ion (positron) temperature enhances (suppresses)
both amplitude and width of the DARWs associated
with DAWs in the modulationally unstable parametric
regime.

6. Conclusion

In this study, we have performed a nonlinear analysis
of DAWs in an unmagnetised FCEPIDPM consisting
of inertial negatively charged warm dust grains and
inertialess non-thermal Cairns’ distributed electrons as
well as isothermal positrons and ions. The evolution
of DAWs is governed by the standard NLSE, and the
coefficients P and Q of NLSE can recognise the mod-
ulationally stable and unstable parametric regimes of
DAWs in the presence of external perturbation. It is
observed that the DAWs become unstable for small val-
ues of k for excess non-thermality (via α) of the plasma
species, and the stable (unstable) parametric regimes
of the DAWs increases with the increase in the value
of electron (dust) number density at a constant value
of the dust charge state. The ion (positron) tempera-
ture enhances (suppresses) both amplitude and width
of the DARWs. Finally, these results may be applica-
ble in understanding the conditions of the MI of DAWs
and associated DARWs in astrophysical environments
(viz., the hot spots on dust rings in the galactic centre
[1–4], auroral zone [2], around pulsars [3,5], interstel-
lar medium [6], Milky Way [6], accretion disks near
neutron stars [6], Jupiter’s magnetosphere [7], etc.) and
laboratory devices.
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