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Abstract. A rule for designing extreme multistable synchronised systems by coupling two identical dynamical
systems has been proposed in this paper. The basic idea behind the proposed scheme is the existence of chaos in
the coupled system in the presence of initial condition-dependent constants of motion. A new conjecture has been
introduced according to which an extreme multistable synchronised system can be designed if all states of one
system will synchronise with the corresponding states of the other system (of the two coupled systems) and the
basin of the synchronised state depends on the difference between the initial conditions of the corresponding states
of the individual systems. The proposed scheme has been illustrated with the help of coupled Rössler systems,
coupled Hénon maps and coupled logistic maps. Moreover, the existence of flip bifurcation with the variation
of initial conditions has been shown analytically as well as numerically in the case of coupled Hénon maps.
Numerical results are reported to show the proficiency of the proposed scheme to design extreme multistable
synchronisation behaviour. This work establishes a theoretical foundation for constructing extreme multistable
synchronised continuous as well as discrete dynamical systems.
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1. Introduction

Multistability is found in almost all areas of science
and nature ranging from ecological models to neuronal
systems. Various studies have been reported for multi-
stability, e.g. in visual perceptions [1], in ecosystems
[2,3], in biological systems [4,5], in neuron dynam-
ics [6,7], in climate dynamics [8], in optical systems
[9], in semiconductor materials [10], in social sys-
tems [11], in chemical reactions [12], in hydrodynamics
[13]. Multistability is generated when a large num-
ber of asymptotic stable states coexist for a fixed set
of parameters depending on their initial conditions. In
the case of extreme multistability of a system, there
exist infinitely many stable attractors in the system.
Designing extreme multistable systems has become
a topic of great interest to theoretical and experi-
mental researchers in the last few decades [14–22].
Hens et al [17] proposed a coupling scheme to obtain
extreme multistable continuous dynamical systems by
using the concept of partial synchronisation and exis-
tence of initial condition-dependent conserved quanti-
ties. Hens et al [17] reported that the coexistence of
infinitely many attractors in two coupled m-dimensional

continuous systems will be possible if m−1 of the vari-
ables of the two systems are completely synchronised
and one of them obeys a constant difference between
them. Pal et al [23] generalised the condition for extreme
multistability and noted that multistable nature can be
obtained if i number of variables of the two systems
are completely synchronised and j number of vari-
ables keep a constant difference between them, where
i + j = m and 1 ≤ i, j ≤ m − 1.

According to Abarbanel et al [24], the states x(t)
and y(t) are in a state of generalised synchronisation if
|y(t)−φ(x(t))| → 0 as t →∞ for a time-independent
continuous function φ. If xi (t) − yi (t) = Ci ,∀t (i =
1, 2, 3, . . . , m) where Ci ’s are constants, then one can
say that the states are synchronised in the generalised
sense. Therefore, it is clear from the above discussions
that according to the existing theory, an extreme multi-
stable system can be designed if i number of variables of
the two systems are synchronised identically and j num-
ber of variables are synchronised in generalised sense
where i + j = m.

Multistability of synchronised states has been reported
by many researchers [25–27]. Extreme multistability
of synchronised state means the existence of infinitely
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many synchronised attractors in the coupled system.
Therefore, there are infinitely many basins of attrac-
tion of the synchronised states in the coupled systems.
In this paper, our basic motivation is to show that
an extreme multistable synchronised system can be
designed if all the m states of one system will syn-
chronise with the m states of the other system in the
presence of m number of initial condition-dependent
constants of motion. In this case, synchronisation means
limt→∞|xi (t) − yi (t)| → Ci , where Ci ’s are initial
condition-dependent constants of motion. This is def-
initely a kind of generalisation of the existing theory of
designing extreme multistable systems [17,23]. The infi-
nite number of initial condition-dependent conserved
quantities is present in the phase space which generates
the possibilities of obtaining infinitely many synchro-
nised attractors in the coupled systems. The existence of
extreme multistable synchronisation opens up new areas
of research, namely the control of synchronised states in
nonlinear dynamics similar to chaos control. Schemes
for constructing extreme multistable synchronised sys-
tem have been proposed for continuous and discrete
dynamical systems. In particular, coupled Rössler sys-
tems, coupled Hénon maps and coupled logistic maps
have been considered for the discussion. Numerical sim-
ulation results are provided in support of the theoretical
predictions.

The paper is organised as follows: in §2, the scheme
for designing extreme multistable synchronised systems
has been proposed. Section 3 illustrates the proposed
scheme with the help of two coupled Rössler systems
and two-dimensional Hénon maps. In §4, the existence
of period doubling bifurcation with the variation of ini-
tial conditions is shown analytically with the help of
normal form in the case of Hénon map. The numeri-
cal simulation results are presented and analysed in §5.
Finally, a conclusion is drawn in §6.

2. Design of extreme multistable synchronised
systems

2.1 Continuous system

Consider two identical n (n ≥ 3)-dimensional dynami-
cal systems of the following type:

Ẋ = f(X) and Ẏ = f(Y), (1)

where the state variables X and Y are n-dimensional
vectors, i.e. X, Y ∈ R

n, f = ( f1, f2, . . . , fn)
t is a

vector function with n components.
Now, couple the two identical dynamical systems of

the above type in the following way:

ẋi = fi (x1, x2, x3, . . . , xn)

+u1i (x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn),

ẏi = fi (y1, y2, y3, . . . , yn)

+u2i (x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn), (2)

where u1i and u2i (i = 1, 2, 3, . . . , n) are the
controllers. The synchronisation error between the state
variables of system (2) is defined as ei = yi − xi , i =
1, 2, . . . , n. The error dynamical system becomes

ėi = fi (y1, y2, y3, . . . , yn)− fi (x1, x2, x3 . . . , xn)

+ u2i − u1i . (3)

The controllers u1i and u2i (i = 1, 2, 3, . . . , n) are cho-
sen in such a way that the coupled system has multistable
synchronisation.

Now, according to the proposed scheme, an extreme
multistable synchronised systems can be designed by
choosing u1i and u2i (i = 1, 2, 3, . . . , n) in such a way
that all the corresponding state variables of the two cou-
pled systems keep a constant difference. Therefore, the
choice of the controllers will be such that

ėi = 0, i = 1, 2, 3, . . . , n. (4)

Therefore, e1, e2, e3, . . . , en become constants of mot-
ion and henceforth yi = xi + ci (i = 1, 2, 3, . . . , n).

Now, the dynamics of coupled systems (2) is equiva-
lent to the following modified system:

ẋi = f1(x1, x2, . . . , xn)

+ u1i (x1, . . . , xn; x1 + c1, . . . , xn + cn), (5)

where ci (i = 1, 2, 3, . . . , n) are the initial condition-
dependent constants. The coupled systems (2) show
extreme multistable synchronisation behaviour if dyn-
amics of system (5) changes qualitatively with the
variation of ci (i = 1, 2, 3, . . . , n). As the uncoupled
system is chaotic, there is a possibility of the existence
of extreme multistable synchronisation in the coupled
systems.

2.1.1 Illustration with Rössler system. In this section,
the proposed technique for designing extreme multi-
stable synchronised system will be illustrated with the
help of coupled identical chaotic Rössler [28] systems.
The famous Rössler system is the following:

ẋ = −y − z,

ẏ = x + ay,

ż = b − cz + xz, (6)

where a, b and c are positive parameters.
Two identical chaotic Rössler systems are coupled in

the following way:

ẋ1 = −x2 − x3 + u11,
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ẋ2 = x1 + ax2 + u12,

ẋ3 = b − cx3 + x1x3 + u13,

ẏ1 = −y2 − y3 + u21,

ẏ2 = y1 + ay2 + u22,

ẏ3 = b − cy3 + y1y3 + u23. (7)

The controllers u1i and u2i (i = 1, 2, 3), are cho-
sen in such a way that the above system has extreme
multistable synchronisation. The dynamics of the syn-
chronisation errors ei = yi − xi (i = 1, 2, 3) will be
governed by

ė1 = −e2 − e3 + u21 − u11,

ė2 = e1 + ae2 + u22 − u12,

ė3 = −ce3 + y1y3 − x1x3 + u23 − u13. (8)

Now, the controllers u1i and u2i (i = 1, 2, 3) are
selected as⎛
⎝u11

u12
u13

⎞
⎠ =

⎛
⎝ 0

a(y2 − x2)

x3(y1 − x1)

⎞
⎠ ,

⎛
⎝u21

u22
u23

⎞
⎠ =

⎛
⎝−x2 − x3 + y2 + y3

x1 − y1
(c − y1)(y3 − x3)

⎞
⎠ . (9)

With this choice, the time evolution for the error sys-
tem will be

ėi = 0, i = 1, 2, 3. (10)

Therefore, ei = constant = ci (i = 1, 2, 3). Hence,
yi = xi+ci , where ci (i = 1, 2, 3) are constants depend-
ing on the initial conditions of the states of the coupled
systems.

The error dynamics (10) possesses a fixed point,
(e∗1, e∗2, e∗3), where e∗1, e∗2 and e∗3 can take any real val-
ues. The synchronisation error system is globally stable
if we can construct a Lyapunov function.

Let us choose a Lyapunov function (L) correspond-
ing to the above error dynamics as L = (e1 − e∗1)2 +
(e2− e∗2)2+ (e3− e∗3)2. Then, clearly L(e∗1, e∗2, e∗3) = 0
and L(e1, e2, e3) ≥ 0. Also, L̇ = 2(e1−e∗1)ė1+2(e2−
e∗2)ė2 + 2(e3 − e∗3)ė3 = 0. This establishes that the
fixed point, (e∗1, e∗2, e∗3), is stable [29]. However, it is
not asymptotically stable. Hence, small perturbation in
the synchronisation manifold will not grow and the syn-
chronisation manifold is stable.

Therefore, the dynamics of system (7) is equivalent
to the following three-dimensional system:

ẋ1 = −x2 − x3,

ẋ2 = x1 + a(x2 + c2),

ẋ3 = b + x3(x1 + c1 − c). (11)

System (7) has extreme multistable synchronisation
behaviour if the dynamical behaviour of system (11)
changes qualitatively with the variation of the value of
c1 and c2. Note that for the above choice of the con-
troller, the system dynamics is independent of c3, i.e.
the synchronised dynamics is independent of the choice
of initial conditions for x3 and y3. One can choose suit-
able controllers to obtain the dependence of all three
constants of motion in the synchronised dynamics.

2.2 Discrete system

In this section, the scheme will be discussed for coupled
identical discrete dynamical systems. Consider an m-
dimensional smooth map of the following type:

x(n + 1) = f(x(n)), (12)

where the state variable x is an m-dimensional vector,
i.e. x ∈ R

m, f = ( f1, f2, . . . , fm)t is a vector function
with m components. Two identical m-dimensional maps
of the above types are coupled in the following way:

x p(n + 1)

= f p(x1(n), x2(n), . . . , xm(n))

+u p(x1(n), . . . , xm(n); y1(n), . . . , ym(n)),

yp(n + 1)

= f p(y1(n), y2(n), . . . , ym(n))

+vp(x1(n), . . . , xm(n); y1(n), . . . , ym(n)), (13)

where u p and vp (p = 1, 2, . . . , m) are the controllers
which will be chosen later. As our aim is to design
an extreme multistable synchronised system, the time
evolution rule of the synchronisation error is very impor-
tant. The synchronisation error between systems (13) is
defined as

ep(n) = yp(n)− x p(n), p = 1, 2, . . . , m

and the dynamical equations for the time evolution of
error are obtained as follows:

ep(n + 1) = f p(y1(n), . . . , ym(n))

− f p(x1(n), . . . , xm(n))

+ vp − u p (14)

(p = 1, 2, . . . , m). The extreme multistable synchro-
nised system can be designed by choosing u1, u2, u3,

. . . , um and v1, v2, v3, . . . , vm in such a way that all
the synchronisation errors become initial condition-
dependent constants of motion. Therefore, u p and vp
(p = 1, 2, . . . , m) are chosen in such a way that

ep(n) = cp for p = 1, 2, . . . , m.

Therefore, the errors ep remain constant in time,
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yp(n) = x p(n)+ cp (p = 1, 2, . . . , m) as n →∞.

Hence, cp’s are initial condition-dependent constants of
motion. In other words, one can say that all the state vari-
able xi ’s of one coupled system will be synchronised in
the generalised sense with the corresponding state vari-
ables of the other coupled system. For the above choice,
the dynamics of the coupled systems (13) is equivalent
to the following system:

x p(n + 1) = f1(x1(n), . . . , xm(n))

+ u p(x1(n), . . . , xm(n);
x1(n)+ c1, . . . , xm(n)+ cm), (15)

p = 1, 2, . . . , m and c1, c2, . . . , cm are initial con-
dition-dependent constants. System (15) shows extreme
multistable synchronisation if infinite number of quali-
tatively different types of stable synchronised attractors
exists with variation of cp’s (p = 1, 2, . . . , m) only. In
other words, the system has infinite number of basins of
attraction for infinite number of different types of initial
conditions.

2.2.1 Illustration with Hénon map. In this section, the
proposed method will be illustrated with the help of
coupled two-dimensional Hénon maps. The following
two-dimensional Hénon map [30] has been considered:

x(n + 1) = 1− ax2(n)+ y(n),

y(n + 1) = bx(n), (16)

where a and b are parameters. It is well known that for
a = 1.4 and b = 0.3, the map shows chaotic behaviour.
Two Hénon maps described by the state variables x1, y1
and x2, y2 are coupled in a highly nonlinear manner
using the controllers ui j (i, j = 1, 2) in the following
way:

x1(n + 1) = 1− ax2
1(n)+ y1(n)+ u11,

y1(n + 1) = bx1(n)+ u12,

x2(n + 1) = 1− ax2
2(n)+ y2(n)+ u21,

y2(n + 1) = bx2(n)+ u22. (17)

The error dynamics of the coupled Hénon maps obeys
the following evolution equation:

e1(n + 1)

= −a(x1(n)+ x2(n))e1(n)+ e2(n)+ u21 − u11,

e2(n + 1)

= be1(n)+ u22 − u12. (18)

Now, our task is to choose ui j (i, j = 1, 2) in such
a way that ep(n) → cp, i.e. x2(n) → x1(n)+ c1 and
y2(n)→ y1(n)+ c2 (cp, p = 1, 2, are initial condition-
dependent constants of the coupled systems). Therefore,
knowing the evolution of the states x1 and y1 one can

easily determine the evolution of the states x2 and y2
and vice versa. This simplification helps us to reduce
the dimension of the coupled system.

The controllers are chosen as⎛
⎜⎝

u11
u12
u21
u22

⎞
⎟⎠ =

⎛
⎜⎝

0 −1 0 1
−b 0 b 0
−1 0 1 0

0 −1 0 1

⎞
⎟⎠

⎛
⎜⎝

x1(n)

y1(n)

x2(n)

y2(n)

⎞
⎟⎠

+
⎛
⎜⎝
−a(x2

2(n)− x2
1(n))

0
0
0

⎞
⎟⎠ . (19)

The above choice transforms eq. (18) to

ep(n) = cp for p = 1, 2. (20)

The error dynamics (20) possesses a fixed point as
(e∗1(n), e∗2(n)), where e∗1(n) and e∗2(n) can take any real
values. The error dynamics can be rewritten as e(n +
1) = Ae(n), where

A =
(

1 0
0 1

)
.

Let us construct a function V as V : G → R, G ⊂ R
m

and define the variation of V as �V (n) = V (e(n+1))−
V (e(n)). Then V is a Lyapunov function on G if

1. V is continuous on G and
2. �V ≤ 0 whenever both e(n) and e(n + 1) are in

G [31].

Now, we define V : R
2 → R by V (e) = eT(n)Be(n),

where e(n) = (e1(n), e2(n))T and B is a positive defi-
nite matrix. Clearly, V is continuous on R

2 and �V = 0,
as e1(n + 1) = e1(n) and e2(n + 1) = e2(n). Then, V
is a Lyapunov function and hence, the error dynamics is
globally stable.

The above choice of controllers immediately tells us
that the dynamics of coupled system (17) can be deter-
mined completely by the following reduced system of
evolution equations:

x2(n + 1) = 1− ax2
2(n)+ y2(n)+ c1,

y2(n + 1) = bx2(n)+ c2. (21)

The coupled Hénon maps have extreme multistable
synchronised states if system (21) has infinitely many
stable attractors with the variation of c1 and c2.

3. Theoretical results

Now, system (21) will be analysed analytically. Assume
that λ1 and λ2 are two roots of the characteristic equation
of the Jacobian matrix J |(x∗,y∗). It is well known that
a fixed point, (x∗, y∗), is called (i) a sink or locally
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asymptotically stable if |λ1| < 1 and |λ2| < 1, (ii) a
source or locally unstable if |λ1| > 1 and |λ2| > 1,
(iii) a saddle if |λ1| > 1 and |λ2| < 1 (or |λ1| < 2
and |λ2| > 1) and (iv) non-hyperbolic if either one of
eigenvalues is of unit modulus i.e. |λ1| = 1 or |λ2| = 1.

The fixed points of system (21) will be obtained from
the following equations:

x∗ = 1− ax∗2 + y∗ + c1,

y∗ = bx∗ + c2.

The two fixed points of system (21) are

P1

(
b − 1+ β

2a
,

b(b − 1+ β)

2a
+ c2

)
,

and

P2

(
b − 1− β

2a
,

b(b − 1− β)

2a
+ c2

)
,

where

β =
√

(b − 1)2 + 4a(1+ c1 + c2).

Therefore, the condition for the existence of fixed point
becomes (b− 1)2+ 4a(1+ c1+ c2) ≥ 0. The Jacobian
matrix of (21) at the fixed point (x∗, y∗) can be written as

J =
(−2ax∗ 1

b 0

)
.

The characteristic equation of the Jacobian matrix J
of system (21) evaluated at the fixed point P1 can be
written as λ2 + Bλ + C = 0, where B = 2ax and
C = −b. Let H(λ) = λ2 + Bλ + C . Then H(1) =
1 + 2ax − b (> 0) and H(−1) = 1 − 2ax − b. We
know the fixed point P1 is a sink (locally asymptotically
stable) when (c1 + c2) < (3(b − 1)2/4a)− 1 and b >

−1; it is a saddle when (c1 + c2) > (3(b − 1)2/4a) −
1; it is a source (locally unstable) when (c1 + c2) <

(3(b − 1)2/4a) − 1 and b < −1, it is non-hyperbolic
when (c1+c2) = (3(b − 1)2/4a)−1, c1 
= −1, (b/a)−
1 and the system may undergo flip bifurcation (period-
doubling bifurcation) in this case. The Hopf bifurcation
can occur at P1 when c1+ c2 < (3/a)− 1 and b = −1.

3.1 Flip bifurcation

To study the flip bifurcation, the following theorem will
be useful [32–34]:

Theorem 1. Let fμ:R → R be a one-parameter family
of mappings such that fμ0 has a fixed point x0 with
eigenvalue −1. Assume
(F1)(

∂ f

∂μ

∂2 f

∂x2 + 2
∂2 f

∂x∂μ

)
= ∂ f

∂μ

∂2 f

∂x2 −
(

∂ f

∂x
− 1

)
∂2 f

∂x∂μ


= 0 at (x0, μ0),

(F2)

a =
(

1

2

(
∂2 f

∂x2

)2

+ 1

3

(
∂3 f

∂x3

))

= 0 at (x0, μ0).

Then there is a smooth curve of fixed points of fμ pass-
ing through (x0, μ0), the stability of which changes
at (x0, μ0). There is also a smooth curve γ passing
through (x0, μ0) so that γ − (x0, μ0) is a union of
hyperbolic period-2 orbits. The curve γ has quadratic
tangency with the line R× μ0 at (x0, μ0).

Proof. Let

S =
{
(c1, c2) : c1 + c2 = 3(b − 1)2

4a
− 1,

c1 + c2 
= −1,
b

a
− 1, a 
= 0, |b| < 1

}
.

We first discuss the flip bifurcation of system (21) at

P1

(
b − 1+ β

2a
,

b(b − 1+ β)

2a
+ c2

)

when parameters vary in a small neighbourhood of S.
Taking the arbitrary parameters (c1, c2) ∈ S, then sys-
tem (21) has a unique interior fixed point P1 and the
corresponding eigenvalues are λ1 = −1 and |λ2| 
= 1.
Choosing δ as a bifurcation parameter, we consider a
perturbation of system (21) as follows:

x(n + 1) = 1− ax(n)2 + y(n)+ c1 + δ,

y(n + 1) = bx(n)+ c2, (22)

where |δ| � 1 which is a small perturbation parameter.
Choose c1 = (3(b − 1)2/4a) − c2 − 1, then β =

2(1− b). In order to transfer the fixed point

P1

(
1− b

2a
,

b(1− b)

2a
+ c2

)

to the origin (0,0),

ζ(n) = x(n)− 1−b

2a
, η(n) = y(n)− b(1−b)

2a
− c2,

then we have(
ζ(n + 1)

η(n + 1)

)
=

(
b − 1 1

b 0

)(
ζ(n)

η(n)

)

+
⎛
⎜⎝−aζ(n)2 + δ + 1− b

2a
b(1− b)

2a
+ c2

⎞
⎟⎠ (23)

and construct an invertible matrix

T =
(

1 1
−b 1

)
. (24)
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Now, make a translation(
ζ(n)

η(n)

)
= T

(
u(n)

v(n)

)
(25)

to system (23), then we get(
u(n + 1)

v(n + 1)

)
=

(−1 0
0 b

) (
u(n)

v(n)

)

+
(

f1(u(n), v(n), δ)

f2(u(n), v(n), δ)

)
, (26)

where

f1(u(n), v(n), δ) = a1u(n)2 + a2u(n)v(n)

+a3v(n)2 + a4δ,

f2(u(n), v(n), δ) = b1u(n)2 + b2u(n)v(n)

+b3v(n)2 + b4δ, (27)

a1 = − a

1+ b
, a2 = − 2a

1+ b
,

a3 = − a

1+ b
, a4 = 1

1+ b
,

b1 = − ab

1+ b
, b2 = − 2ab

1+ b
,

b3 = − ab

1+ b
, b4 = b

1+ b
. (28)

Next, we determine the centre manifold W c(0, 0) of
(26) at the fixed point (0, 0) in a small neighbourhood
of δ = 0. Based on the centre manifold theory [35–38],
we know that there exists a centre manifold W c(0, 0),
which can be approximately represented as follows:

W c(0, 0) = {(u(n), v(n)) ∈ R2 : v(n) = W (u(n), δ)

= ĉ0δ + ĉ1u(n)2 + ĉ2u(n)δ + ĉ3δ
2

+O((|u(n)| + |δ|)3)},
where O((|u(n)| + |δ|)3) is a function with order at
least three of its variables. Now, f1 = f1(u(n), W (u(n),

δ), δ), we have

v(n + 1) = W (u(n + 1), δ) = W (−u(n)+ f1, δ)

= ĉ0δ + ĉ1u(n)2 − (2ĉ1a4 + ĉ2)u(n)δ

+(ĉ1a2
4 + ĉ2a4 + ĉ3)δ

2 + O(3). (29)

Also,

v(n + 1) = bv(n)+ f2

= (bĉ0 + b4)δ + (bĉ1 + b1)u(n)2

+(bĉ2 + b2ĉ0)u(n)δ + (bĉ3 + b3ĉ2
0)δ

2

+O(3). (30)

By equating the coefficients of (29) and (30), we have

ĉ0 = b

1− b2 , ĉ1 = − ab

1− b2 ,

ĉ2 = 2ab

(1+ b)(1− b2)
, ĉ3 = ab(b2 + b − 1)

(1− b2)3 . (31)

Thus, the centre manifold can be approximated as

v(n) = ĉ0δ + ĉ1u2(n)+ ĉ2u(n)δ

+ĉ3δ
2 + O(3). (32)

Substituting (32) into the first equation of (26), allows
us to describe the dynamics on the centre manifold by
the following equation:

un+1 = −un + f1(un, vn, δ)

= −un + a1u2
n + a2unδ + a2ĉ1u3

n

+a2ĉ2u2
nδ + a2ĉ3unδ

2 + a3ĉ2
0δ

2

+2a3ĉ0ĉ1u2
nδ + 2a3ĉ0ĉ2unδ

2 + 2a3ĉ0ĉ3δ
3

+a4δ + O(4). (33)

Denote the right-hand side of (33) by F , then the
conditions of flip bifurcation are the following two
discriminatory quantities: α1 
= 0 and α2 
= 0 (i.e. con-
ditions (F1) and (F2) of Theorem 1 are equivalent to
α1 
= 0 and α2 
= 0), where

α1 =
(

∂2 F

∂un∂δ
+ 1

2

∂ F

∂δ

∂2 F

∂u2
n

) ∣∣∣∣
(0,0)


= 0,

α2 =
(

1

6

∂3 F

∂u3
n
+

(
1

2

∂2 F

∂u2
n

)2
) ∣∣∣∣

(0,0)


= 0. (34)

A simple calculation shows that

α1 = a2 + a1a4 = −3a + 2ab

(1+ b)2 ,

α2 = a2
1 + a2ĉ1 = a2

1− b2 . (35)

Based on the above analysis and Theorem 1, we have
the following results.

If (c1, c2) ∈ S; α1 > 0 and α2 > 0 in (35), then sys-
tem (21) undergoes a flip bifurcation at the fixed point,

P1

(
b − 1+ β

2a
,

b(b − 1+ β)

2a
+ c2

)
.

Also, α2 > 0 implies that the flip bifurcation is super-
critical, i.e. a period-2 orbit of system (21) appears and
it is stable.

In the case of the fixed point,

P2

(
b − 1− β

2a
,

b(b − 1− β)

2a
+ c2

)
,

we have the eigenvalues of Jacobian matrix J as−1
2 (b−

1− β)± 1
2

√
(b − 1− β)2 + 4b and tr J − 1 < −det J
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and −tr J − 1 > det J . Hence, fixed point P2 is not a
stable fixed point of (21).

Therefore, the existence of period doubling bifurca-
tion in system (21) has been shown analytically with
the variation of the parameter c1 as well as c2. As c1
and c2 are initial condition-dependent parameters, it is
clear that with the variation of initial conditions, period
doubling may occur in the system. Hence, we have
shown analytically that the newly proposed technique is
suitable for designing multistable systems. �

4. Extreme multistable synchronisation in logistic
map

We have already discussed that extreme multistable syn-
chronisation is possible in coupled one-dimensional dis-
crete dynamical systems. Here the existence of extreme

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

x
2
(0)

0

0.1

0.2

0.3

0.4
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0.6

0.7

0.8

0.9

1

x
2

Figure 1. Bifurcation diagram x2 of the logistic map (39)
with respect to parameters x1(0) = 0 and r = 4.

multistable synchronisation is shown in coupled logistic
maps.

We consider the following one-dimensional logistic
map [39]:

x(n + 1) = r x(n)(1− x(n)), (36)

where r is the growth rate. It is well known that for
r = 4 the map shows a chaotic behaviour. We coupled
two logistic maps described by the state variables x1 and
x2 as follows:

x1(n + 1) = r x1(n)(1− x1(n))+ u1,

x2(n + 1) = r x2(n)(1− x2(n))+ u2. (37)

The error dynamics of the coupled system is given by
the following equation:

e(n + 1) = re(n)− r x2
2(n)+ r x2

1(n)+ u2 − u1. (38)

We choose ui (i = 1, 2) in such a way that e(n + 1)→
e(n), i.e. e(n)→ c (c is the initial dependent constant).

Let

u1 = r(x2(n)− x1(n))− r x2
2(n)+ r x2

1(n),

u2 = x2(n)− x1(n).

By the above choice of the controllers (37) becomes

x2(n + 1) = r x2(n)(1− x2(n))+ c. (39)

The x1 state can be obtained by adding a constant with
the x2 state, i.e. the states x1 and x2 are synchronised.
Numerical simulation results for different initial condi-
tions are shown in figure 1. It is clear from the figure
that the coupled system has synchronised fixed points,
synchronised period-2 orbits and it becomes chaotic
through the synchronised period doubling route. In other

4 4.5 5 5.5 6 6.5

y
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(0)
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18

20

x 3

Figure 2. Bifurcation diagram of system (11) with respect to the parameter y1(0) for a = b = 0.2, c = 9.0, c2 = 0.40 and
x1(0) = 0.
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Figure 3. Phase diagrams of system (11) plotted in the yz plane for different values of (a) c1 = 6.5 (limit cycle), (b) c1 = 5.5
(period-2), (c) c1 = 5.0 (period-4) and (d) c1 = 4.0 (chaos) by fixing the parameters a = b = 0.2, c = 9.0 and c2 = 0.40.

Figure 4. Variation of maximum Lyapunov exponent (λ) of
system (11) with respect to y1(0) for a = b = 0.2, c = 9.0,
c2 = 0.40 and x1(0) = 0.

words, the coupled one-dimensional chaotic maps have
extreme multistable synchronisation behaviour.

5. Numerical results

The effectiveness of the proposed scheme is shown in
this section. Numerical simulations are done by using
MATLAB R2016b.

5.1 Continuous system

According to the theory discussed in §2.1, c1 = y1(0)−
x1(0). Now, choosing x1(0) = 0, we have c1 = y1(0).

Bifurcation diagram of system (11) with respect to initial
condition y1(0) for a = b = 0.2, c = 9.0 and taking
the parameter c2 = 0.40 is shown in figure 2. Extreme
multistable synchronisation is obvious from the figure.
The phase diagrams of system (11) are plotted in the yz
plane for different values of c1 (c1 = 4.0, 5.0, 5.5 and
6.5) in figure 3. It is clear from figure 3 that system (11)
has qualitatively different dynamical behaviour with the
variation of initial condition y1(0).

The variation of maximum Lyapunov exponent (λ) of
the same system with respect to c1 is shown in figure 4,
which again established the extreme multistable syn-
chronisation behaviour of the coupled systems. The
existence of qualitatively different types of synchronised
attractors as well as synchronised chaos in the coupled
systems with the variation of initial conditions is demon-
strated via numerical results.

5.2 Discrete system

In system (21), both c1 and c2 are initial condition-
dependent parameters. According to the proposed sch-
eme, c1 = x2(0)− x1(0) and c2 = y2(0)− y1(0). If we
choose, x1(0) = 0 and y1(0) = 0, then c1 = x2(0)

and c2 = y2(0), respectively. In figure 5, we have
presented the bifurcation diagram with respect to x2(0)

for fixed values of a, b and y2(0). Figures 5a–5d are
drawn, respectively, for (a) a = 0.1, b = 0.3, c2 = 0;
(b) a = 0.1, b = 0.3, c2 = 0.6; (c) a = 0.9, b = 0.3,
c2 = 0.5 and (d) a = 1.2, b = 0.1, c2 = 0.6. The varia-
tion of the maximum Lyapunov exponent with respect to
x2(0) is shown in figure 6. We can conclude that extreme
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Figure 5. Bifurcation diagrams of x2 of system (21) with respect to initial condition x2(0) (related to the control parameter
c1): (a) for a = 0.1, b = 0.3, c2 = 0, x1(0) = 0; (b) for a = 0.1, b = 0.3, c2 = 0.6, x1(0) = 0; (c) for a = 0.9, b = 0.3,
c2 = 0.5, x1(0) = 0 and (d) for a = 1.2, b = 0.1, c2 = 0.6, x1(0) = 0.
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Figure 6. Variation of the maximum Lyapunov exponent (λ) of system (21) with respect to initial condition x2(0) (control
parameter c1): (a) a = 0.1, b = 0.3, c2 = 0, x1(0) = 0; (b) a = 0.1, b = 0.3, c2 = 0.6, x1(0) = 0; (c) a = 0.9, b = 0.3,
c2 = 0.5, x1(0) = 0 and (d) a = 1.2, b = 0.1, c2 = 0.6, x1(0) = 0.
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Figure 8. Time evolution of x2 of (21) keeping x1(0) = 0 fixed: (a) period-two orbit for x2(0) = 4, (b) period-four orbit for
x2(0) = 8, (c) period-eight orbit for x2(0) = 8.8 and (d) chaotic for x2(0) = 12 (a = 0.1, b = 0.3, c2 = 0.6).

multistability can be generated successfully via the pro-
posed coupling scheme. Therefore, from our numerical
results, it is clear that extreme multistable synchronisa-
tion can be generated via the proposed scheme.

We have plotted a bifurcation diagram with respect
to initial condition x2(0) in figure 7 for coupled system
eqs (17) and (19) together. The coupled systems clearly
show the flip bifurcation with respect to initial condi-
tions. Moreover, it also shows period doubling cascades.

It is important to note that for a = 0.1, b = 0.3 ( < 1)

and c2 = 0.6, the fixed point

P1

(−0.7+√1.13+ 0.4c1

0.2
,

−0.09+ 0.3
√

1.13+ 0.4c1

0.2

)
satisfies the stability condition−2.825<c1<2.075, and
P1 is asymptotically stable. Moreover for c1 = 2.075,



Pramana – J. Phys. (2019) 93:19 Page 11 of 13 19

Figure 9. Bifurcation diagram of x2 of (21) of with respect to initial condition y2(0) (control parameter c2) for y1(0) = 0:
(a) a = 1.4, b = 0.1, c1 = 0; (b) a = 1.2, b = 0.1, c1 = 0.9; (c) a = 0.5, b = −0.2, c1 = 0.4 and (d) a = 0.5, b = 0.3,
c1 = −0.9.
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Figure 10. Variation of the maximum Lyapunov exponent (λ) of system (21) with respect to initial condition y2(0) (control
parameter c2): (a) a = 1.4, b = 0.1, c1 = 0; (b) a = 1.2, b = 0.1, c1 = 0.9; (c) a = 0.5, b = −0.2, c1 = 0.4 and (d)
a = 0.5, b = 0.3, c1 = −0.9.

α1 = −0.213 (
=0) and α2 = 0.01 (>0) and the fixed
point P1 of system (21) undergoes supercritical flip
bifurcation as shown in figure 5b. The variation of

maximum Lyapunov exponent with respect to x2(0) is
presented in figure 6b. These are in very good agreement
with the theoretical predictions. It is observed that there
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is a cascade of period doubling, and in the period
doubling route synchronised chaos appears in the system
for c1 ≥ 8.98.

The time evolution diagram of x2 in (21) is presented
in figure 8. Existence of synchronised period-two orbit
for x2(0) = 4, synchronised period-four orbit for
x2(0) = 8, synchronised period-eight orbit for x2(0) =
8.8 and synchronised chaotic orbit for x2(0) = 12
(a = 0.1, b = 0.3, c2 = 0.6) is observed.

Keeping c1, a and b fixed, we have plotted bifurca-
tion diagrams with respect to initial condition y2(0) in
figure 9. The initial condition y2(0) is related to the
control parameter c2 by the relation c2 = y2(0)− y1(0).
Setting the parameters (a) a = 1.4, b = 0.1, c1 = 0;
(b) a = 1.2, b = 0.1, c1 = 0.9; (c) a = 0.5, b = −0.2,
c1 = 0.4; and (d) a = 0.5, b = 0.3, c1 = −0.9
figure 9a–9d are drawn, respectively. The variation of
the maximum Lyapunov exponent of system (21) with
respect to y2(0) is plotted in figure 10. The existence
of extreme multistability of the synchronised states is
clearly observed from the figures.

6. Conclusion

We proposed a new scheme for designing extreme mul-
tistable synchronised systems coupled to two identical
dynamical systems. The basic concept behind the pro-
posed scheme is the existence of chaos in the coupled
system in the presence of initial condition-dependent
constants of motion. Coupling two continuous n (n ≥
3)-dimensional chaotic dynamical systems, we have
the 2n-dimensional phase space of the coupled sys-
tem. Existence of n number of constants of motion
in the coupled system reduces the phase-space dimen-
sion to n. Because chaos is possible in three- or
higher-dimensional autonomous phase space, there is
a possibility of obtaining extreme multistable synchro-
nisation. Existence of a wide range of qualitatively
different dynamical behaviour with the variation of
initial condition-dependent constants of motion in the
reduced dynamical system guarantees the existence of
extreme multistable synchronisation in the coupled sys-
tems. Notice that extreme multistable synchronisation
cannot be obtained in this scheme if the original con-
tinuous system has phase-space dimension less than
or equal to two because chaos is impossible in two-
or lower-dimensional autonomous continuous dynam-
ical systems. On the other hand, as chaotic dynamics
is possible in one-dimensional discrete dynamical sys-
tem, extreme multistable synchronisation is possible
even in coupled one-dimensional maps in the pres-
ence of one initial condition-dependent constant of
motion.

In the proposed scheme, we first claim that extreme
multistability in synchronised state is possible if all
the state variables of the two systems synchronise in
the generalised sense, i.e. the difference between the
corresponding states of the coupled systems becomes
an initial condition-dependent constant. According to
Hens et al [17], the coexistence of infinitely many
attractors in an m-dimensional coupled system will be
possible if m − 1 of the variables of the two sys-
tems are completely synchronised and one of them
obeys a constant difference between them. Latter on Pal
et al [23] generalise it and proposed that the coexis-
tence of infinitely many attractors in an m-dimensional
coupled system will be possible if i of the variables
of the two systems are completely synchronised and
j of them obey a constant difference between them,
where i + j = m (1 ≤ i, j ≤ m − 1). In this
paper, we introduce the most general precondition for
emergence of extreme multistability as: an extreme
multistable system can be designed if all m states of
one system will synchronise in generalised sense with
m states of the other system of the two coupled sys-
tems. Moreover, this paper also proposed a technique
for designing extreme multistable synchronised systems
which was not proposed earlier by any others. In the
case of coupled Hénon maps, by using the centre man-
ifold theorem and the bifurcation theory, it has been
proved that flip bifurcation exists with the variation of
initial conditions. In all cases numerical bifurcation dia-
grams and variation of largest Lyapunov exponents with
respect to the initial condition-dependent parameters
are presented to show the effectiveness of the proposed
scheme.

This scheme may be useful to find some hidden prop-
erties of extreme multistable synchronised systems. This
scheme may also be useful to design extreme multi-
stable synchronised systems coupling two non-identical
dynamical systems. In future, one can generalise the
scheme for designing extreme multistability of synchro-
nised states in coupled different dimensional dynamical
systems. Extreme multistability observed in natural
systems may be explained with the help of extreme
multistable synchronisation behaviour of the network
of dynamical systems. The proposed scheme introduces
a straightforward way of constructing smooth dynami-
cal systems with extreme multistable nature. Moreover,
this work pointed out the control problem of extreme
multistable synchronised systems to obtain the desired
synchronised state in the case of biological, chemical
or engineering systems. Human mind can be thought
of as an extreme multistable system because mind can
have infinite number of stable states and under small
perturbation, mind can change from one stable state to
another. Therefore, extreme multistable systems may be
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very useful for modelling human mind as a dynamical
system.
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