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Abstract. In this paper, we have studied the locally rotationally symmetric (LRS) Bianchi type-I cosmological
model filled with a bulk viscous cosmological fluid in f(R) gravity in the presence of time-varying gravitational
and cosmological constant. We have used the power-law and intermediate scenario for scale factor to obtain the
solution of the field equations. The evolution of temperature of a viscous Universe is also analysed.
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1. Introduction

The area of cosmology has undergone a paradigm shift
since the idea of accelerated expansion of the Uni-
verse was proposed. The phenomenon is ascribed to
the so-called ‘Dark Energy’, whose nature is still not
well established and the scientific community is ven-
turing into it. The analysis of large chunks of data
collected from Type-Ia supernovae (SNe Ia) [1,2], cos-
mic microwave background radiation (CMBR) [3,4],
constraints from Sloan digital sky survey (SDSS) galaxy
clustering [4,5], baryonic acoustic oscillations (BAO)
[6] and weak lensing [7] shed light upon this. Ample
number of theories have been proposed to explain the
late-time cosmic acceleration and dark energy. A mind-
ful lot is exercising on it with the advent of newer results
on the general relativity front. The simplest explana-
tion is provided by a cosmological constant. However,
this scenario is plagued by a severe fine-tuning prob-
lem associated with its energy scale [8]. The presence
of the late-time cosmic acceleration of the Universe can
indeed be explained by f(R) gravity and f(R) modified
theories [9–11].

In Einstein’s field equations (EFE), there are two
important parameters: the cosmological constant � and
the gravitational constant G. The Newtonian constant
of gravitation G plays the role of coupling between

geometry and matter in the Einstein’s field equation.
The idea of varying � and G was proposed in due
course of time and some modified general theory of
relativity with �(t) and G(t) for an evolving Uni-
verse in time were established. Variation of Newton’s
gravitational parameter G was originally suggested by
Dirac [12] on the basis of his many hypotheses. Many
extensions of general relativity with G = G(t) have
been made ever since Dirac first considered the pos-
sibility of a variable G. Abdusattar and Vishwakarma
[13] have suggested the conservation of the energy–
momentum tensor, which consequently renders G and
� as coupled fields. This leaves Einstein’s field equa-
tions formally unchanged. Bonanno and Reuter [14]
have considered the scaling of G(t) and �(t) arising
from an underlying renormalisation group flow near
an infra-red attractive fixed point. The resulting cos-
mology [15] explains the high red-shift SNe Ia and
observations of radio sources successfully. Various the-
ories on variable G with induced gravity models were
examined by Copi et al [16], Smolin [17] and Adler
[18] in the context of induced gravity model, where
G is generated by means of a non-vanishing vacuum
expectation value of a scalar field. Recently, a con-
straint on the variation of G has been obtained by using
Wilkinson microwave anisotropy probe (WMAP) and
the Big Bang nucleosynthesis observations by Zee [19],
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which comes out to be −3 × 10−13 < (Ġ/G)today

< 4 × 10−13 yr−1.
The Friedmann–Robertson–Walker (FRW) models

assume the present day Universe to be homogeneous
and isotropic. However, the latest observational data of
the cosmic microwave background (CMB) by WMAP
satellite show hints of anomalies that the isotropy
seems to be broken in cosmological data [20]. Large-
angle anomalies in the CMB can be a very impor-
tant means to understand the very early Universe and
effects this early Universe had on the present day
large-scale structure. According to the theories pro-
posed by Misner [21] and Gibbons and Hawking [22],
anisotropy at the early stage of the Universe turns into
an isotropic present Universe with initial anisotropies
dying away.

Several authors [23,24] have suggested that the
anisotropic Bianchi Universes can play important roles
in observational cosmology (see also [21,25–29]). The
WMAP data [30–32] seem to suggest that the standard
cosmological model requires the addition of a posi-
tive cosmological constant that bears resemblance to
the Bianchi morphology [33–35]. According to this,
the Universe should have a slightly anisotropic spatial
geometry in spite of the inflation, contrary to generic
inflationary models [36–40].

In many cosmological and astrophysical situations,
an idealised fluid model of the matter is inappropri-
ate. Dissipative effects, including both the bulk and
shear viscosities, are supposed to play important roles
in the early evolution of the Universe. From a physi-
cal point of view, the inclusion of dissipative terms in
the energy–momentum tensor of the cosmological fluid
seems to be the best motivated generalisation of the
matter term of the gravitational field equations. Fayaz
et al [41] have studied the dark energy and viscous fluid
cosmology with variables G and � in an anisotropic
space–time by considering the constant deceleration
parameter (Berman law). The f(R) modified gravity
including higher-order terms based on different equa-
tions of state parameter in variables G and � has been
studied by Khurshudyan et al [42]. Recently, Chaubey
et al [43] have studied several anisotropic cosmological
models with variables � and G in viscous cosmology
and f(R, T ) gravity with �(T ). The study of varying
� and G with bulk viscous fluid in R2 gravity was car-
ried out by Paul and Debnath [44]. The variations of G
and � lead to modification of Einstein’s field equations
and the conservation laws [42,44,45]. This is because,
if we allow G and � to be variables in Einstein equa-
tions, the energy conservation law is violated. Therefore,
the study of varying G and � can be carried out using
the modified field equations and modified conservation
law [46].

The present paper is organised as follows. In §1, a
brief introduction is given. Section 2 deals with the basic
equations of cosmological model. Gibbs equation is also
defined in this section. In §3, we have obtained the
cosmological solutions of our model for power law.
We have analysed the variation of temperature in the
presence and absence of viscosity. The cosmological
solutions and variation of temperature for intermediate
scenario are also given in §3. The paper ends with a
conclusion given in §4.

2. Model and basic equations

A gravitational action associated with higher-order term
in the scalar curvature R containing a varying G is given
by

I = −
∫ [

1

16πG(t)
f(R) + Lm

] √−gd4x, (1)

where f(R) is a function of R and its higher power
including a variable cosmological constant �(t), g is
the determinant of the four-dimensional metric and Lm
represents the matter Lagrangian.

Variation of the action equation (1) with respect to gi j
is given by [44]

fR(R)Ri j − 1

2
f(R)gi j

+ fRR(R)(∇i∇jR − gi j∇ i∇ jgi j )

+ fRRR(R)(∇i R∇ jR − ∇kR∇kRgi j )

= −8πG(t)Ti j , (2)

where ∇i is the covariant differential operator. Ti j is the
energy–momentum tensor for the matter determined by
Lm which is defined as Ti j = ρuiu j + pgi j , where ρ

and p are respectively the energy density and pressure
of the cosmic fluid. Here fR(R) denotes the derivative
of f(R) with respect to R.

We consider the locally rotationally symmetric (LRS)
Bianchi type-I (BI) metric given by

ds2 = dt2 − a2
1dx2 − a2

2(dy2 + dz2), (3)

where the metric functions a1(t) and a2(t) are func-
tions of cosmic time t only. The scale factor a1(t) is the
expansion in the x-direction anda2(t) is the expansion in
y- and z-directions of three-dimensional space. The
directional Hubble parameters in the respective direc-
tions are defined as

Hi = ȧi
ai

, i = 1, 2. (4)

The overhead dot denotes the differential with respect
to cosmic time t . We define the generalised Hubble
parameter H as
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H = ȧ

a
= 1

3

(
ȧ1

a1
+ 2

ȧ2

a2

)
= 1

3
(H1 + 2H2). (5)

Here we assume a1 ∝ a2
n , where n is a positive

constant. For n = 1, LRS BI model reduces to FRW
cosmological model whereas for other values of n, the
model becomes anisotropic.

From eq. (5), one can obtain the relation between
directional Hubble parameters and generalised Hubble
parameter as

H1 = nH2 =
(

3n

n + 2

)
H. (6)

The scalar curvature, R, is given by

R = 2

[
ä1

a1
+ 2

ä2

a2
+ 2

ȧ1ȧ2

a1a2
+

(
ȧ2

a2

)2
]
. (7)

Now from eqs (6) and (7), the scalar curvature in terms
of H and Ḣ is given by

R = 6

[
Ḣ + 3(n2 + 2n + 3)

(n + 2)2 H2
]
. (8)

From eqs (5) and (8), the (0, 0) and trace components
of eq. (2) yield

Ḣ1 + H2
1 + 2(Ḣ2 + H2

2 )

= 1

fR(R)

[
f(R)

2
+ fRR(R)Ṙ(H1 + 2H2)

]

− 8πG(t)T00

fR(R)
, (9)

6

[
Ḣ + 3(n2 + 2n + 3)

(n + 2)2 H2
]

= 1

fR(R)
[2 f(R) + 3 fRR(R)

× (R̈ + (H1 + 2H2)Ṙ + 3 fRRR(R)Ṙ]
− 8πG(t)T

fR(R)
. (10)

Let us consider a higher-order gravity [44]

f(R) = R + αR2 − 2�(t). (11)

It is a well-known fact in the cosmology that the model
based on eq. (11) cannot provide late-time acceleration
for the present cosmic acceleration but can be used for
the inflation in the early Universe [45]. Kahya et al
[47] have also considered eq. (11) for their study in a
higher derivative theory of gravity in the presence of
time-varying � and G.

From eqs (6), (8)–(11) we get

3(2n + 1)

(n + 2)2 H + 54α(n2 + 2n + 3)(−n2 + 2n − 1)

(n + 2)4 H4

− 6α Ḣ2 − 36α ḢH2 − 12αHḦ

= �(t) − 8πG(t)ρ

3
. (12)

The conservation equation for matter (T i j ; j = 0)
becomes

ρ̇ + 3(ρ + p)H = 0. (13)

By using eq. (11) into eq. (2), the divergence of
eq. (2) leads to

�(t), j g
i j = −8π(G(t), j T

i j + G(t)T i j , j ). (14)

Equations (12) and (14) are the key equations to study
cosmological models with a perfect fluid in the presence
of time-varying G and �. After including the effect
of viscosity in the above, the perfect fluid pressure in
eq. (14) is replaced by an effective pressure peff , which
is given by peff = p + �, where p is the isotropic
pressure and � is the bulk viscous stress.

In the extended irreversible thermodynamics, the bulk
viscous stress � satisfies a transport equation [48–51]
given by

� + τ�̇ = −3ξH − ε

2
τ�

[
3H + τ̇

τ
− ξ̇

ξ
− Ṫ

T

]
,

(15)

where ξ is the coefficient of bulk viscosity, τ is the relax-
ation coefficient for transient bulk viscous effects and
T ≥ 0 is the absolute temperature of the Universe. The
parameter ε takes the value 0 or 1. Here ε = 0 rep-
resents the truncated Israel–Stewart theory and ε = 1
represents the full Israel–Stewart (FIS) causal theory.
One recovers the non-causal Eckart theory for τ = 0.

The covariant conservation equation (14) including
viscous fluid is given by

ρ̇ + 3(ρ + p + �)H = −
(
Ġ

G
ρ + �̇

8πG

)
. (16)

This equation reduces to the usual continuity equation
for a barotropic fluid in the case of constants G and �

and � = 0.
Consider an equation of state for the barotropic fluid

pressure given by

p = γρ, (17)

where γ is a constant and γ ∈ [0, 1].
The deceleration parameter q is related to H as

q = d

dt

(
1

H

)
− 1. (18)
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The deceleration parameter q < 0 represents the
accelerating phase of the Universe and q > 0 represents
the decelerating phase of the Universe. The temperature
of the Universe is defined through the Gibbs equation,
which is given by

T ds = d

(
ρ

η

)
+ pd

(
1

η

)
. (19)

Gibbs integrability condition for the behaviour of tem-
perature in the Universe is obtained as

η
∂T

∂η
+ (ρ + p)

∂T

∂ρ
= T

∂p

∂ρ
. (20)

For a barotropic fluid, the temperature follows a power

law which is T ∼ ρ
γ

1+γ . The above temperature may be
determined using the Gibbs integrability condition also:

Ṫ

T
= −3H

[(
∂p

∂ρ

)
η

+ �

T

(
∂T

∂ρ

)
η

]
. (21)

3. Cosmological solutions

In most of the investigations involving bulk viscosity, it
is a widely accepted relation [52] that bulk viscosity is a
power function of the energy density [53–55], given by

ζ = β ′ρs, τ = β ′ρs−1, (22)

where β ′(≥0) and s(≥0) are constants.
Now eq. (13) for viscous fluid is reduced to

ρ̇ + 3(ρ + p + �)H = 0. (23)

From eqs (17) and (23), we get

ρ̇ + 3(1 + γ )ρH + 3�H = 0. (24)

From eqs (24) and (16), we get

8π Ġρ + �̇ = 0. (25)

The variation law � ∼ H2 has been proposed by sev-
eral researchers [56–59] and Berman [60] has given the
relation between the energy density and Hubble param-
eter as ρG ∝ H2. Using ρ ∼ Hm and � ∼ H2 in
eq. (25), we obtain

G = AHb, (26)

where A and b (= 2 − m) are constants.

3.1 Power-law model

Consider a power law of the Universe, given by

a(t) = a0t
D, (27)

wherea0 and D are constants which are to be determined
from the field equation.

The accelerating mode of expansion (q < 0) of the
Universe is obtained for D > 1.

From eqs (5), (26) and (27), the Hubble’s parameter
and gravitational parameter are given by

H = D

t
, (28)

G = A

(
D

t

)b

. (29)

From eqs (12) and (28) we have

3(2n + 1)

(n + 2)2

(
D

t

)2

+ 54α(n2 + 2n + 3)(−n2 + 2n − 1)

(n + 2)4

(
D

t

)4

− 6α

(
D

t2

)2

+ 36α

(
D3

t4

)

− 24α

(
D2

t4

)
= �

3
− 8πGρ

3
. (30)

From eqs (25) and (29), we obtain

ρ = − �̇

8πXt−(1+b)
, (31)

where X = −AbDb.
Putting the value of ρ from eq. (31) into eq. (30), we

get

9(2n + 1)

(n + 2)2

(
D

t

)2

+ 162α(n2 + 2n + 3)(−n2 + 2n − 1)

(n + 2)4

(
D

t

)4

− 18α

(
D2

t4

)2

+ 108α

(
D3

t4

)
− 72α

(
D2

t4

)

= � − �̇t

b
. (32)

Solving the differential equation (32), we get

� = x1D2b

b + 3
t−2

+b(x2D4 + x3D2 + x4D3 + x5D2)

(b + 5)
t−4 + C ′

t−b
,

(33)

where

x1 = 9(2n + 1)

(n + 2)2 ,

x2 = 162α(n2 + 2n + 3)(−n2 + 2n − 1)

(n + 2)4 ,
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x3 = −18α, x4 = 108α, x5 = −72α and C ′ is an
integration constant.

From eq. (8) we get

ρ = − 1

8πX

{−2x1D2b

b + 3

1

t2−b

−4b(x2D4+x3D2+x4D3+x5D2)

(b + 5)

1

t4−b

+bC ′

t−2

}
. (34)

Now from eq. (24) the bulk viscous stress is given by

� = − 1

3H
ρ̇ − (1 + γ )ρ

= t

24πDX

(−2x1D2b

b + 3

(b − 2)

t3−b

−4b(x2D4 + x3D2 + x4D3 + x5D2)

(b + 5)

(b − 4)

t5−b

+2tbC ′
)

− (1 + γ )

(
− 1

8πX

(−2x1D2b

b + 3

1

t2−b

−4b(x2D4+x3D2+x4D3+x5D2)

(b + 5)

× 1

t4−b
+ bC ′

t−2

))
. (35)

For physically realistic solution, the bulk viscous
stress is essentially negative. For FIS theory we use
ε = 1, then eq. (15) reduces to the following differ-
ential equation:

Ṫ

T
= 3H − ρ̇

ρ
+ 6Hρ

�
+ ρ1−s 2

β ′ + 2
�̇

�
. (36)

Integrating eq. (36) we get

T = T0
�2a3

ρ
e
∫ 6Hρ

�
dte

2
β′

∫
ρ1−sdt

, (37)

where T0 is an integration constant.
For a suitable choice of variables α = 0, b = 1, s = 0

and C ′ = 0, eqs (34) and (35) reduce to

ρ = −9(2n + 1)D

16πA(n + 2)2t
(38)

and

� = 9(2n + 1)

16πA(n + 2)2t

(
−1

3
+ D (1 + γ )

)
. (39)

From eqs (38) and (39) in eq. (37), we get

T = T0
−9(2n + 1)

16πAD(n + 2)2

(
−1

3
+ D (1 + γ )

)2

×a3
0 t

− 18D2
3D(1+γ )−1 − 9(2n+1)

16πA(n+2)2
D
β′ +3D−1

. (40)

In the absence of viscosity, the variation of
temperature by using Gibbs condition, eq. (21), is given
by

T = T0t
−3γ D. (41)

3.2 Intermediate scenario

In this section, the scale factor is written as

a(t) = eBt
β

, (42)

where B > 0 and 0 < β < 1.
From eqs (42) and (5), the Hubble parameter is given

as

H = Bβtβ−1. (43)

From eqs (26) and (43), we have

G = ABbβbtb(β−1). (44)

From eqs (12) and (43) we have

X1t
2(β−1) + X2t

4(β−1) − X3t
2(β−2)

−X4t
(3β−4) − X5t

2(β−2) = � − 8πGρ, (45)

where

X1 = 9(2n + 1)

(n + 2)2 B2β2,

X2 = 162α(n2 + 2n + 3)(−n2 + 2n − 1)

(n + 2)4 B4β4,

X3 = 18αB2β2(β − 1)2,

X4 = 108αB3β3(β − 1),

X5 = 36αB2β2(β − 1)(β − 2).

From eqs (25) and (44), we get the density parameter
as

ρ = − �̇

8πBβb(β − 1)2(β − 2)tb(β−1)−1
. (46)

From eqs (44)–(46), we get the cosmological constant
in terms of t as

� =b(β − 1)

(
X1

(b + 2)(β − 1)
t2(β−1)

+ X2

(b + 4)(β − 1)
t4(β−1)

− X3 + X5

(b + 2)(β − 1) − 2
t2(β−2)
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− X4

(b + 3)(β − 1) − 1
t (3β−4)

)

+ Ct−b(β−1), (47)

where C is an integration constant.
Now from eqs (46) and (47) we have

ρ = − 1

8π ABbβb

(
2X1

(b + 2)
t (2β−bβ+b−2)

+ 4X2

(b + 4)
t (4β−bβ+b−4)

− 2(X3 + X5)(β − 2)

(b + 2)(β − 1) − 2
t (2β−bβ+b−4)

− X4(3β − 4)

(b + 3)(β − 1)−1
t (3β−bβ+b−4)−Ct−2b(β−1)

)
.

(48)

Now from eq. (24), the bulk viscosity stress for inter-
mediate scenario is given by

� = − 1

3H
ρ̇ − (1 + γ )ρ

= 1

24πABb+1βb+1tβ−1

×
(

2X1(2β − bβ + b − 2)

(b + 2)
t (2β−bβ+b−3)

+4X2(4β − bβ + b − 4)

(b + 4)
t (4β−bβ+b−5)

−2(X3+X5)(β−2)(2β−bβ+b − 4)

(b+2)(β−1) − 2
t (2β−bβ+b−5)

− X4(3β − 4)(3β − bβ + b − 4)

(b + 3)(β − 1) − 1
t (3β−bβ+b−5)

+ 2Cb(β − 1)t−2b(β−1)−1
)

+(1 + γ )
1

8πABbβb

(
2X1

(b + 2)
t (2β−bβ+b−2)

+ 4X2

(b + 4)
t (4β−bβ+b−4)

−2(X3 + X5)(β − 2)

(b + 2)(β − 1) − 2
t (2β−bβ+b−4)

− X4(3β − 4)

(b + 3)(β − 1) − 1
t (3β−bβ+b−4)

−Ct−2b(β−1)
)
. (49)

Here the initial condition is considered asC = 0, α =
0, b = 2, s = 0 in eq. (16), and we get the density ρ

and bulk viscous stress, respectively, as

ρ = − 9(2n + 1)

16πA(n + 2)2 (50)
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Figure 1. Density ρ vs. time t in power-law model for
n = 1, 2 and 3.
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Figure 2. Density ρ vs. time t in intermediate scenario for
n = 1, 2 and 3.
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Figure 3. Cosmological constant � vs. time t in power-law
model for n = 1, 2 and 3.
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Figure 4. Cosmological constant�vs. time t in intermediate
scenario for n = 1, 2 and 3.

and

� = 9(2n + 1)

16πA(n + 2)2 (1 + γ ). (51)

From eqs (37), (50) and (51), we obtain
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Figure 5. Solid and dashed lines represent the variation of
T/T0 with t in the presence and absence of viscosity, respec-
tively, in power-law model for γ = 0.1, 1/3, 1 and n = 0.001
(where A = −20, D = 2, a0 = 4, β ′ = 2).
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Figure 6. Solid and dashed lines represent the variation of
T/T0 with t in the presence and absence of viscosity, respec-
tively, in power-law model for γ = 0.1, 1/3, 1 and n = 1
(where A = −20, D = 2, a0 = 4, β ′ = 2).
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Figure 7. Solid and dashed lines represent the variation of
T/T0 with t in the presence and absence of viscosity, respec-
tively, in power-law model for γ = 0.1, 1/3, 1 and n = 1000
(where A = −20, D = 2, a0 = 4, β ′ = 2).

T = T0
−9(2n + 1)(1 + γ )2

16π(n + 2)2A
e
(Btβ)3− 6Btβ

1+γ
− 9(2n+1)

8π(n+2)2Aβ′ t .

(52)

In the absence of viscosity the variation of tempera-
ture by using Gibbs condition, eq. (21), is given by

T = T0e−3γ Btβ . (53)

4. Conclusions

We have studied the LRS BI Universe with variables
� and G filled with viscous fluid in the f(R) modi-
fied gravity. We have discussed the power law and the
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Figure 8. Solid and dashed lines represent the variation
of T/T0 with t in the presence and absence of viscosity,
respectively, in intermediate scenario for n = 1, 2, 3 (where
A = −0.25, B = 0.5, β = 0.5, β ′ = 1).
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Figure 9. Solid line represents graphs between
T/T0 and t in the presence of viscosity for A =
−0.25, n = 2, B = 0.5, β = 0.5, β ′ = 1 and dashed
line, in the absence of viscosity.
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Figure 10. Variation of T/T0 with t in the presence of viscos-
ity in power-law model for n = 0.1, 1, 10, 100 and γ = 1/3
(where A = −20, D = 2, a0 = 4, β ′ = 2).

intermediate scenario for the scale factor which is an
essential feature for the dynamics of the Universe. From
figures 1 and 2 it is noticed that energy density ρ

deceases with the evolution of time in both power-law
model and intermediate scenario. In figures 3 and 4, we
have plotted the cosmological constant �(t) against the
cosmic time. It is noticed that �(t) approaches zero with
the evolution of the Universe in both the scenarios. It is
also observed that the cosmological constant �(t) in the
anisotropic model (i.e. when n 
= 1) has lower value
than the isotropic model (i.e. when n = 1) at a given
instant of time.

Figures 5–9 show the variation of temperature for
different values of γ and n in the presence or the
absence of viscosity in both the scenarios. It is evi-
dent that higher value of γ leads to a Universe with
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Figure 11. Variation of Ġ/G with t in power-law model for
b = −0.5,−1,−2.
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Figure 12. Variation of Ġ/G with t in intermediate scenario
for β = 0.1, 0.5, 0.9 and b = 2.

lower temperature at a given instant of time. The
evolution of temperature of a viscous Universe is found
to be more than that in a Universe without viscosity.
From figure 10, it is noticed that the higher the value of
n (
=1 i.e. anisotropic Universe) leads to a Universe with
lower temperature at a given instant of time. Hence, the
anisotropic model has lower temperature in comparison
to isotropic model at a given instant of time. Here we
see from figure 8 an interesting solution which suggests
that the present temperature of the Universe T ∼ 3 K
in an intermediate scenario, which is in good agreement
with the observed value T ∼ 2.72 K from CMBR.

From figures 11 and 12 it is clear that the varia-
tions of Ġ/G finally tend to a constant that satisfied
the constraints from Viking Landers on Mars data [61].
Ġ/G ≤ 6 in our scale and also constraints from the
pulsar system PSR B1913 + 16 and PSR B1855 + 09
[62]. Ġ/G ≤ 9 in our scale.
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