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Minimal length Schrödinger equation via factorisation approach
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Abstract. The fourth-order modified Schrödinger equation due to the generalised uncertainty principle is
considered in one dimension with a box problem. The factorisation of fourth-order self-adjoint differential equations
is then discussed and thereby the wave functions and energy spectra of the modified Schrödinger equation are derived.
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1. Introduction

The goal of unification of quantum mechanics and
gravity has been investigated by many theories includ-
ing loop quantum gravity, double special relativity and
string theory [1–5]. Although such scenarios are based
on different assumptions and approaches, all imply the
generalisation of the Heisenberg uncertainty principle.
The so-called generalised uncertainty principle (GUP)
corresponds to the existence of a minimal length of
other Planck length lp = √

h̄G/c3 [3]. The generali-
sation modifies the wave function’s form and therefore
the basic characteristics of the equation, i.e. the wave
function and the energy eigenvalue are altered. It goes
without saying that the order of energy at such theories
is much higher than the order of our present experiments
and we have to work on theoretical bases. The existing
literature indicates that all basic equations of quan-
tum mechanics including non-relativistic Schrödinger,
relativistic Klein–Gordon, Dirac and Duffin–Kemmer–
Petiau equations have been analysed within this mod-
ified framework with various interactions ([6–18] and
references therein). The arising equation, in its simplest
form, i.e. the one-dimensional Schrödinger equation,
appears in the sixth-order form. The latter is frequently
approximated by a fourth-order differential equation.
This is just when the problem arises; unlike the second-
order differential equations, we know so little about
higher-order equations and their analytical study. In
the present work, we first review the elegant idea of

Caruntu for the factorisation of fourth- and sixth-order
ordinary differential equations [19,20]. Next, we apply
their novel idea to the fourth-order minimal length
Schrödinger equation with box example and obtain the
wave function and the energy spectra.

2. Factorisation of self-adjoint differential
equations

Let us consider a self-adjoint ordinary differential oper-
ator of the form [19,20]

L(2n) = 1

ρ

dn

dxn

(
ρβn dn

dxn

)
, (1)

where the scalar functions ρ(x), β(x) and α(x) satisfy

1

ρ

dρ

dx
= α

β
, (2)

d2α

dx2 + d3β

dx3 = 0. (3)

For n = 2, eq. (1) can be factorised as

L4 = L2(L2 − δ2), (4)

where

δk = (k − 1)
dα

dx
+ k(k − 1)

2

d2β

dx2 . (5)

In the fourth-order case, we have

(L2n − μ)[y] = 0 (6)
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and the equation is factorised as [19,20]

n∏

k=1

(L2 − λk)[y] = 0. (7)

The constants λk are given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ1 + λ2 + · · · + λn = δ2 + · · · + δn,

λ1λ2 + λ1λ3 + · · · + λn−1λn
= δ2δ3 + · · · + δn−1δn,

· · ·
λ1λ2 · · · λn = (−1)n−1μ.

(8)

The general solution of the spectral-type equation (6) is
given by

y =
n∑

k=1

yk, (9)

where yk is obtained from

L2[yk] − λk yk = 0, k = 1, 2, . . . , n. (10)

The extended form of eq. (9) is

β(x)
d2yk
dx2 + [α(x) + β ′(x)]dyk

dx
− λk yk = 0. (11)

In summary, we may write [19,20]

L4 = β2 d4

dx4 + 2β(α + 2β ′) d3

dx3 + {[β(α + 2β ′)]′

+ α(α + 2β ′)} d2

dx2 , (12)

which gives [19,20]

1

ρ

d2

dx2

(
ρβ2 d2

dx2

)
=

[
β

d2

dx2 + (α + β ′) d

dx

]

×
[
β

d2

dx2 + (α + β ′) d

dx
− (α′ + β ′)

]
, (13)

where δ2 = α′+β ′′. Therefore, the factorisation appears
as

[
β

d2

dx2 + (α + β ′) d

dx
− λ1

]

×
[
β

d2

dx2 + (α + β ′) d

dx
− λ2

]
= 0, (14a)

where λ1 and λ2 are given by

λ1 =
δ2 +

√
δ2

2 + 4μ

2
,

λ2 =
δ2 −

√
δ2

2 + 4μ

2
. (14b)

3. Generalised uncertainty principle

We consider a GUP of the form [3,4]

�x�p ≥ h̄

2
(1 + β(�p)2 + γ ), (15)

where β and γ are positive constants. Such a form
corresponds to the minimal length (�x)min = h̄

√
β,

supposed to be of the Planck length lp = √
h̄G/c3

order. Equation (15) implies the GUP [3,4] [x, p] =
ih̄(1 + βp2). For non-Hermitian quantum mechanics
with minimal length, the interested reader may find use-
ful content in [21,22]. Up to the first order in β, the
modified GUP implies [3,4]

Pop = h̄

i

∂

∂x

[

1 + β

3

(
h̄

i

∂

∂x

)2
]

. (16)

Let us now consider the so-called box example

V(x) =
{

0, 0 < x < a,

∞, elsewhere. (17)

In this case, the resulting modified Schrödinger equation
appears as

∂4ψ(x)

∂x4 − 3

2βh̄2

∂2ψ(x)

∂x2 − 3mE ′

βh̄4 ψ(x) = 0. (18)

Equation (18) can be factorised as

(
d2

dx2 − λ1

) (
d2

dx2 − λ2

)
ψ(x) = 0 (19a)

with

λ1 = 3 + √
48βmE ′ + 9

4βh̄2 ,

λ2 = − 12mE ′

h̄2(3 + √
48βmE ′ + 9)

. (19b)

For the basic concepts of factorisation, we refer to
the instructive book of Dong [23]. Also, some related
aspects to supersymmetry quantum mechanics can be
found in [18,24] and references therein. Now, eq. (18)
can be factorised as
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(
d2

dx2 − 3 + √
48βmE ′ + 9

4βh̄2

)

×
(

d2

dx2 + 12mE ′

h̄2(3 + √
48βmE ′ + 9)

)
ψ(x) = 0

(20)

and the general solution of eq. (4) is given by

ψ(x) = ψ1(x) + ψ2(x), (21)

where ψ1(x) and ψ2(x) are the general solutions of the
second-order differential equations obtained as

ψ1(x) = c1 sinh

⎛

⎝

√
3 + √

48βmE ′ + 9

4βh̄2 x

⎞

⎠

+ c2 cosh

⎛

⎝

√
3 + √

48βmE ′ + 9

4βh̄2 x

⎞

⎠, (22)

ψ2(x) = c3 sin

(√
12mE ′

h̄2(3 + √
48βmE ′ + 9)

x

)

+ c4 cos

(√
12mE ′

h̄2(3 + √
48βmE ′ + 9)

x

)

.

(23)

Considering the boundary condition at the origin
removes the terms cosh x and cos x . On the other hand,
as the wave function vanishes at x = a, the term sinh x
is neglected and the wave function takes the form

�(x) = c3 sin( j x) (24a)

with
√

12mE ′

h̄2(3 + √
48βmE ′ + 9)

= j. (24b)

The boundary condition at x = a implies sin ja = 0
where j = nπ/a and n = 1, 2, 3, . . .. Using the nor-
malisation condition

∫ a
0 |c3|2 sin2((nπx)/a) = 1, we

simply find

ψ(x) =
√

2

a
sin

nπx

a
. (25)

The energy condition
√

12mE ′

h̄2(3 + √
48βmE ′ + 9)

= nπ

a
(26)

leads to

E ′
n = n2π2h̄2

2ma2 + β

3

n4π4h̄4

ma4 , (27)

which reduces to the well-known case of ordinary
quantum mechanics in the case of vanishing minimal
length parameter.

4. Conclusions

We considered the one-dimensional modified
Schrödinger equation due to minimal length with the
problem of a particle in a box. We considered the approx-
imate case in which the arising Schrödinger equation
appears in the fourth-order form. We next considered
the factorisation of the arising fourth-order equation and
thereby reported the wave function and energy spectra.
The idea looks interesting when we bear in mind the very
few analytical works in the field and the deep insight the
analytical approaches provide us. We hope to generalise
the idea to more realistic interactions.
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