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Statistical distribution of quantum particles
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Abstract. In this work, the statistical distribution functions for boson, fermions and their mixtures have been
derived and it is found that distribution functions follow the symmetry features of β distribution. If occupation
index is greater than unity, then it is easy in the present approach to visualise condensations in terms of intermediate
values of mixing parameters. There are some applications of intermediate values of mixing parameters.
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1. Introduction

Fermi–Dirac and Bose–Einstein distribution are the two
well-known β distributions that describe respectively
the number of indistinguishable fermions and bosons in
different energy states [1]. All experimentally observed
particles are either bosonic or fermionic; the general
principles of quantum mechanics do not prevent the
existence of some objects obeying intermediate statistics
[2]. One of the motivation to study intermediate statistics
is to construct fault tolerant quantum computer using an
approach such as topological quantum computation [3]
that relies on the existence of topological states of mat-
ter whose quasiparticle excitations are neither bosons
nor fermions but are particles known as non-Abelian
anyons obeying non-Abelian braiding statistics. In fact,
there is a huge amount of work on intermediate statis-
tics between Bose–Einstein and Fermi–Dirac statistics,
mostly triggered by the quantum Hall effect and anyonic
statistics [4–7]. The statistics of quasiparticles entering
the quantum Hall effect, deduced by Danieal [8] from
the adiabatic theorem, are also found to obey interme-
diate statistics.

The formulation presented in this work leads to
intermediate statistics as a continuous interpolation
between the Bose–Einstein and Fermi–Dirac statistics.
The present approach is based on the assumption that
every particle has a mixture property of both fermions
and bosons. This is equivalent to the assumption that
every particle is a boson with certain probability μb

and a fermion with probability μf = (1 − μb). The
present work attempts to generate the probability dis-
tribution plot (parametrised by μb), that lies between
the graphical plots of Fermi–Dirac and Bose–Einstein
distributions.

The rest of the paper is organised as follows. In §2, we
introduce the basic definition of thermodynamic prob-
ability W . Section 3 gives the derivation and graphical
plot for occupation index in terms of parameter μb using
multivariate β distribution. The application of inter-
mediate statistics is discussed in §4 and §5 gives the
conclusion.

2. Definition and identities

We define the thermodynamic probability W in terms of
β function B(α1, α2) as

W (α1, α2) = 1

B(α1, α2)
= �(α1 + α2)

�(α1) · �(α2)
. (1)

Based on the above definition, it is easy to prove the
following identity:

W (α1, α2 + α3) · W (α2, α3) = �(α1 + α2 + α3)

�(α1) · �(α2) · �(α3)

= W (α1, α2, α3). (2)

For Bose–Einstein statistics, the thermodynamic prob-
ability W i for the i th energy level, parametrised by the
number of bosons N i

b and the number of cells gi is
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W i (N i
b, gi − 1) = �(N i

b + gi − 1)

�(N i
b) · �(gi − 1)

.

As N i
b and gi are considerably large numbers, we can

neglect the −1 in the above expression. So, for Bose–
Einstein statistics, the thermodynamic probability W i

becomes

W i (N i
b, gi ) = �(N i

b + gi )

�(N i
b) · �(gi )

. (3)

Similarly, for Fermi–Dirac statistics, the thermo-
dynamic probability W i for the i th energy level,
parametrised by the number of fermions N i

f and number
of free cells gi − N i

f is

W i (N i
f , gi − N i

f ) = �(gi )

�(N i
f ) · �(gi − N i

f )
. (4)

3. Formulation of thermodynamic probability W

In this section we consider a theoretical framework
to generate Fermi–Dirac, Bose–Einstein and family of
intermediate statistics from the thermodynamic proba-
bility W . The conventional method can be generalised
further in the domain of γ function so as to include both
statistics.

Consider a system of N identical and indistinguish-
able particles. These particles have definite energies and
can occupy definite energy states. Hence, they can be
represented as phase points in phase space. To deter-
mine the energy distribution of these particles in the
most probable state, we divide the available volume in
the phase space into a large number, say k, of compart-
ments. Each compartment represents the small interval
of energy. Further, we divide each compartment into
elementary cells, each of size h3. Suppose that the size
of the compartment is very large compared to the size
of the cell so that each compartment contains a very
large number of cells. Let (N 0, N 1, ..., N k) be the num-
ber of particles having energy levels (E0, E1, ..., Ek)

in the compartments numbered as 0, 1, ..., k contain-
ing g0, g1, ..., gk cells, respectively in them. As total
number of N particles in the system are distributed in
k number of compartments, we have N = ∑k

i=0 N i

and total energy E = ∑k
i=0(N i · Ei ). For intermediate

statistics, the thermodynamic probability W i of the i th
energy level, parametrised by the number of bosons N i

b,
number of fermions N i

f and number of free cells gi − N i
f

is

W i (N i
b, N i

f , gi −N i
f ) = W i (N i

b, gi ) · W i (N i
f , gi − N i

f )

= �(N i
b+gi )

�(N i
b) · �(N i

f ) · �(gi −N i
f )

.

(5)

As probability is multiplicative, the probability W
of the composite system is equal to the product of
the probabilities of fermion–boson systems. The ther-
modynamic probability W i for Bose–Einstein statistics
in eq. (3) can be obtained by setting N i

f = 0 in eq.
(5). Similarly, the thermodynamic probability W i for
Fermi–Dirac statistics in eq. (4) can be obtained by set-
ting N i

b = 0 in eq. (5). The total number of different
arrangements of all particles of the system gives the
thermodynamic probability W .

W =
k∏

i=1

W i (N i
b, N i

f , gi − N i
f )

=
k∏

i=1

�(N i
b + gi )

�(N i
b) · �(N i

f ) · �(gi − N i
f )

. (6)

Taking the natural log of both sides of eq. (6), we get
an expression for dimensionless entropy S∗.

ln W =
k∑

i=0

(ln �(N i
b + gi ) − ln �(N i

b)

− ln �(N i
f ) − ln �(gi − N i

f )). (7)

Using Stirling’s approximation for �(N ), i.e. ln �(N )∼= N · (ln N − 1), we get

ln W =
k∑

i=1

((N i
b + gi ) · (ln(N i

b + gi ) − 1)

− N i
b · (ln N i

b − 1) − N i
f · (ln N i

f − 1)

− (gi − N i
f ) · (ln(gi − N i

f ) − 1). (8)

The most likely distribution can be obtained by
maximising the log-likelihood of thermodynamic prob-
ability W . The solution of this maximisation problem
leads to the family of statistics. Fermi–Dirac and Bose–
Einstein statistics are special cases of this general family
of statistics. Consider the following optimisation prob-
lem:

maximize
(N 0,N 1,...,N k)

ln W

subject to
k∑

i=0

δN i = 0,

k∑
i=0

Ei · δN i = 0.

To solve it, we start by defining the derivative of the
generalised Lagrangian Li for the case in which we have
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only one energy level i so that we can neglect the sum.
We have

δLi =
[

ln
( gi

N i
b

+ 1
)

· δN i
b + ln

( gi

N i
f

− 1
)

· δN i
f

]

−α · δN i − β · Ei · δN i . (9)

Let N i
b = μb · N i and N i

f = μf · N i where μb, μf
denote the probabilities for bosons and fermions respec-
tively such that μb + μf = 1. So eq. (9) becomes
(
μb · ln

( gi

μb · N i
+ 1

)

+ μf · ln
( gi

μf · N i
− 1

)
− α − β · Ei

)
· δN i = 0.

(10)

The occupation index is defined as N i/gi = yi . As
δN i �= 0, we get

μb · ln
( 1

μb · yi
+1

)
+μf · ln

( 1

μf · yi
−1

)
− ln Ci = 0,

(11)

where Ci = eα+β·Ei
. The special cases for eq. (11) are

as follows:

1. For μb = 0, yi = 1/(eα+β·Ei + 1), i.e., Fermi–
Dirac statistics.

2. For μf = 0, yi = 1/(eα+β·Ei − 1), i.e., Bose–
Einstein statistics.

3. For μb = μf = 1/2, yi = 2/(
√

(Ci )2 + 1), i.e.,
intermediate statistics.

The plot of the solution for the occupation index yi in eq.
(11) for various values of μb is shown in figure 1. In the
plot, the occupation index is along y-axis and (Ei/EF )

is along x-axis where α + β · Ei = 8 · (X − 1).

4. Discussion

For μb =0, 1/2, 2/3 and 1, the occupation index yi in
figure 1 along the y-axis is 1, 2, 3 and ∞ respectively,
i.e., as μb → 1, yi → ∞. As seen from both plots
in figure 1, we can infer that the intercept term on the
y-axis is 1/(1 − μb). For Bose–Einstein statistics, the
occupation index is ∞ while the Fermi–Dirac statistics
has a maximum occupancy index of unity. If occupation
index is one, it means particle cannot go to condensa-
tion, whereas if the occupation index is infinity then
particles can have the properties of the Bose–Einstein
condensate.

All elementary particles are either bosons or fermions,
and the spin-statistics identify the resulting quantum
statistics that differentiates between them. Particles

Figure 1. Distribution functions for various values of μb.

commonly associated with matter are fermions, and
they have half-integer spin. On the other hand, the par-
ticles associated with fundamental forces are bosons,
and they have integer spin. Wave–particle duality pro-
poses that all particles exhibit both wave and particle
properties. We may assume that every quantum par-
ticle has properties of both fermions and bosons, and
may associate with matter or fundamental forces with
a certain probability. Therefore, we found the form of
statistical distribution which is the solution of eq. (11)
using the computer algebra for the arbitrary values of
μb. The generated distribution function can be used to
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study bosons, fermions and a mixture of fundamental
particles.

The negative values of μb can be justified if it is
defined as statistical weight. We know that statistical
weights may be positive or negative [9]. Normally, as
Ei/EF increases, the occupation index decreases. But
when we set μb to −0.5 or −1.5, the corresponding dis-
tribution function has a special property that as Ei/EF
increases, the occupation index shows increasing trend
and may have special application in analysing certain
properties.

5. Conclusion

We have taken a logical approach to derive the gen-
eral distribution function for the mixture of bosons and
fermions. We found that some distribution functions
have surprising properties. We get a simple functional
form of distribution function corresponding to μb =
1/2. However, for arbitrary values of μb, one has to
take the help of computer algebra to obtain distribution
functions. In future, we hope to extend this idea further

to generate more distribution functions for the thermo-
dynamic probability

W = �(gb + gf + Nb)

�(gb)�(Nb)�(Nf)�(gf − Nf)
.

References

[1] L P Kadanoff, Statistical physics (World Scientific, Sin-
gapore, 2000)

[2] A M L Messiah and O W Greenberg, Phys. Rev. 136, 248
(1964)

[3] C Nayak, S H Simon, A Stern, M Freedman and S D
Sarma, Rev. Mod. Phys. 80, 1083 (2008)

[4] F Wilczek, Phys. Rev. Lett. 49, 957 (1982)
[5] M V Medvedev. Phys. Rev. Lett. 67, 4147 (1991)
[6] F D M Haldane, Phys. Rev. Lett. 67, 937 (1991)
[7] G A Goldin, R Menikof and D H Sharp, J. Math. Phys.

21, 650 (1980)
[8] D Arovas, J R Schrieffer and F Wilczek, Phys. Rev.

Lett. 53, 722 (1984)
[9] K H Hoffmann and M Schreiber, Comput. Stat. Phys. 198

(2012)


