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Abstract. In the present paper, we have studied the binding energy of the shallow donor hydrogenic impurity,
which is confined in an inhomogeneous cylindrical quantum dot (CQD) of GaAs-Alx Ga1−x As. Perturbation method
is used to calculate the binding energy within the framework of effective mass approximation and taking into account
the effect of dielectric mismatch between the dot and the barrier material. The ground-state binding energy of the
donor is computed as a function of dot size for finite confinement. The result shows that the ground-state binding
energy decreases with the increase in dot size. The result is compared with infinite dielectric mismatch as a limiting
case. The binding energy of the hydrogenic impurity is maximum for an on-axis donor impurity.
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1. Introduction

The physics of semiconductor low-dimensional het-
erostructure systems, such as quantum wells (QWs),
quantum wires (QWWs) and quantum dots (QDs) have
been studied intensively for the last few decades. These
structures are important because they chiefly attribute
to transport properties associated with carrier confine-
ment. Quantum dots have been the subject of intensive
experimental and theoretical investigations. QDs are
semiconductor inclusions with dimensions in nanome-
ter scale showing quantum size effects due to complete
confinement in zero-dimensional structures [1–7]. In the
recent past, a new class of quantum dots called quantum
dot–quantum well or inhomogeneous quantum dots has
been made possible, which is composed of two semi-
conductor materials having different band gaps [8]. The
study of hydrogenic impurity is chiefly attributed to low-
dimensional semiconductor heterostructures because
the presence of impurity in such structures influences
the electronic and optical properties [9–14].

Quantum dots (QDs) are low-dimensional nano-
structures which exhibit exotic behaviours distinct from
their bulk counterparts chiefly due to size quantization
effect, which is typical of a quantum confined system.

In such nanoheterostructures, whenever the de Broglie
wavelength of electron exceeds the appropriate dimen-
sions of the device structure, the quantum nature dictates
the physical properties in them. As a result, the energy
of the electrons in the confined directions become quan-
tized and forms a discrete energy spectrum. For such
size-quantized electrons, the scattering probability is
drastically suppressed [15].

The donor impurity in semiconductor nanoheterostru-
ctures introduces bound state in the forbidden energy
gap which strongly affects both the optical and transport
properties of semiconductor heterostructures. There-
fore, understanding the impurity states in semiconductor
heterostructures is of utmost importance. Although the
impurity states within bulk semiconductors had been
exhaustively studied, the same within the quantum well
(QW) structures was initiated only in the last decade [10,
16–18]. Recently, similar studies have been extended
to quasi-one-dimensional and quasi-zero-dimensional
structures like quantum well wires (QWWs) [19,20] and
quantum dots (QDs) [11,21]. The effect of the geome-
try of QDs [22] and that of the cross-sectional forms of
QWWs [23] on the impurity binding energy have also
been investigated. However, the investigators have so far
only concentrated their interests on the impurity ground
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state, using variational techniques mostly in spherical
quantum dots under the effective mass approximation
[24–30]. In the present analysis, a perturbation method
has been employed to calculate the shallow donor hydro-
genic impurity state in cylindrical QDs having a square
potential well of finite barrier. The impurity binding
energies are theoretically estimated for QDs of wide-gap
semiconductors and computed for GaAs-Alx Ga1−x As
as a typical representative.

The reason for the choice of quantum dot with cylin-
drical geometry is that this type of structure is naturally
conceived and mathematically more suitable to exploit
with the use of Bessel functions in cylindrical structures
[31,32].

A theoretical work is presented in this paper for cylin-
drical quantum dot within the framework of effective
mass Schrödinger equation for investigating binding
energy of the impurity state for finite confinement in
transverse plane and infinite in the axial direction. An
electron as impurity is assumed to be confined in a
cylindrical quantum dot formed by GaAs semiconduc-
tor surrounded by a barrier semiconductor material
Alx Ga1−xAs having finite band gap as compared to
the well material constituting inhomogeneous quantum
dots. In the structures under consideration, the bound-
ary conditions to be satisfied across the well–barrier
interface are the effective mass boundary conditions
(EMBC) which are also referred to as Bastard boundary
conditions [33–35]. In the present work, the result of
perturbation method yields the first-order correction as
the second-order correction seemed to be insignificant
[36].

2. Theory

The CQD under study is embedded in a matrix of lower
dielectric constant (εout). Our theoretical investigation
presents a simplified approach, wherein the electron–
phonon interaction and ion–phonon coupling have been
ignored.

In the effective mass approximation, the Hamilto-
nian of a single hydrogenic impurity in a CQD can be
expressed as

Ĥ = p̂2

2m∗ + VC − e2

4πεr
= Ĥ0 + Ĥ ′ (1)

where

Ĥ0 = p̂2

2m∗ + VC

and

Ĥ ′ = − e2

4πεr

Figure 1. Geometry of CQD.

with e and m∗ represent respectively, the charge and
effective mass of the electron, p is the momentum, ε is
the dielectric constant of the cylindrical dot material and
r gives the location of the impurity with respect to the
centre of the cylindrical dot as illustrated in figure 1. VC
describes the confining potential and its profile is given
as

VC =
{

0; ρ ≤ R
V0; rho > R (2)

and

VC =
{

0; |z| ≤ d
∞; |z| > d.

(3)

The effective mass and the dielectric constant of the
CQD vary as

m∗, ε =
{

m∗
1, εin; ρ ≤ R and |z| ≤ d

m∗
2, εout; ρ > R and |z| > d,

(4)

where R is the radius of the cylindrical dot, 2d is the
height of the dot and ρ is the distance of the impurity
from the axis of the CQD in transverse plane. The last
term in eq. (1) is the Coulomb interaction term due to
the presence of hydrogenic impurity which acts as per-
turbation over the original Hamiltonian.

The eigenfunction of the Hamiltonian in the absence
of the impurity in CQD is given by

ψ(ρ, z) = A0 f (ρ)g(z), (5)

where f (ρ) is the ground-state solution of the effec-
tive mass Schrödinger equation in the transverse plane
assuming the azimuth angle φ to be invariant in that
plane and g(z) is its solution in z-direction of the dot
respectively with A0 as the normalisation constant.
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The exact forms of wave functions in the ground state
on solving the effective mass Schrödinger equation in
the two regions ρ < R, |z| < d and ρ > R, |z| > d
respectively are given by

ψi (ρ, z) = A0 J0(�1ρ) cos �1z; ρ < R, |z| < d

(6)

and

ψ0 (ρ, z) = A0 J0 (�1 R)

K0 (�2 R)
K0(�2ρ)

× cos �1de−�2(z−d); ρ > R, |z| > d,

(7)

where

f (ρ)α

⎧⎨
⎩

J0(�1ρ); ρ ≤ R and |z| ≤ d

J0 (�1 R)

K0 (�2 R)
K0 (�2ρ) ; ρ > R and |z| > d

(8)

and

g(z)α

{
cos �1z; ρ ≤ R and |z| ≤ d
cos �1d e−�2(z−d); ρ > R and |z| > d

(9)

with

�1 =
√

2m∗
1 E

h̄2

and

�2 =
√

2m∗
2 (V0 − E)

h̄2

wherein E is the energy of the electron and V0 is the
confining potential.

The binding energy of the hydrogenic impurity is
defined as the difference between the energy states with-
out and with the impurity in a particular level. Thus, the
impurity binding energies are given by the correction
term obtained from the perturbation method.

Now the impurity binding energy inside the CQD is
given by

�E (1)
in = 〈ψ∗

i |Ĥ ′|ψi 〉
=

∫
ψ∗

i Ĥ ′ψi dτ (10)

�E (1)
in =

∫
ψ∗

i Ĥ ′ψi dτ

=
∫

A0 J0 (�1ρ) cos �1z

(
− e2

4πεinr

)
×A0 J0 (�1ρ) cos �1zdτ, (11)

where

dτ = ρdρdφdz

in cylindrical coordinate system and

r = (ρ2 + z2)1/2.

Hence eq. (11) becomes

�E (1)
in = − A2

0e2

4πεin

∫
J 2

0 (�1ρ) cos2 �1z

× ρ√
ρ2 + z2

dρdφdz (12)

for the CQD, it is assumed that (z/ρ) ∼= 1 [37]. Hence
eq. (12) becomes

�E (1)
in = − A2

0e2

4πεin
√

2

∫ R

0
J 2

0 (�1ρ)dρ

×
∫ d

−d
cos2 �1zdz

∫ 2π

0
dφ. (13)

The solution of eq. (13) after simplification yields

�E (1)
in = − A2

0e2

4πεi
√

2
2πR

(
d + 1

2�1
sin 2�1d

)
. (14)

On solving for the normalization constant A0, we get
the value of normalization constant as

A2
0 = 2

2π R2(d + (1/2�1) sin 2�1d)
.

Now putting the value of normalization constant A2
0 in

eq. (14), we get

�E (1)
in = − 2e2

4πεin
√

2R
. (15a)

Negative sign signifies that binding energy is attractive
in nature.

|�E (1)
in | = 2e2

4πεin
√

2R
. (15)

Equation (15) gives the ground-state binding energy of
the hydrogenic impurity inside a CQD with square well
potential.

Now the Hamiltonian outside the CQD (ρ > R) is
given by

Ĥ = p̂2

2m∗
2

+ VC − e2

4πεoutr
= Ĥ0 + Ĥ ′, (16)

where

Ĥ0 = p̂2

2m∗
2

+ VC
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and

Ĥ ′ = − e2

4πεoutr

for ρ > R, VC = V0 and for |z| > d, VC = ∞.
The wave function outside the CQD is given as

ψ0 (ρ, z) = A0 J0 (�1 R)

K0 (�2 R)

×K0 (�2ρ) cos �1d e−�2(z−d) (17)

= C0 K0 (�2ρ) e−�2z (18)

where

C0 = A0 J0 (�1 R)

K0 (�2 R)
cos �1d e�2d .

Now the impurity binding energy outside the CQD is
given by

�E (1)
out = 〈ψ∗

0 |Ĥ ′|ψ0〉
= 〈ψ∗

0 |− e2

4πεoutr
|ψ0〉 (19)

�E (1)
out =

∫
ψ∗

0 Ĥ ′ψ0dτ

= −
∫

C0 K0 (�2ρ) e−�2z e2

4πεoutr

× C0 K0 (�2ρ) e−�2zρdρdφdz. (20)

Equation (20) implies

�E (1)
out = − C2

0e2

4πεout

∫
K 2

0 (�2ρ)√
ρ2 + z2

e−2�2z

× ρdρdφdz (21)

for the CQD, it is assumed that (z/ρ) ∼= 1 [37]. Hence
eq. (21) becomes

�E (1)
out = − C2

0e2

4πεout
√

2

∫ ∞

R
K 2

0 (�2ρ)

×
∫ d

−d
e−2�2zdz

∫ 2π

0
dφ. (22)

The solution of eq. (22) after simplification yields

�E (1)
out = − C2

0e22π

4πεout
√

2

e−2�2 R

π�2
2 R

[
1

�2
sinh(2�2d)

]
.

(23)

The value of C0 is written as

C2
0 = 1

2π(e−2�2 R/π�2
2) ((1/�2) sinh (2�2d))

. (24)

Now putting the value of C2
0 , we get �E (1)

out as

�E (1)
out = − e2

4πεout
√

2

1

R
(25a)

|�E (1)
out| = e2

4πεout
√

2

1

R
. (25)

The ground-state binding energy of the hydrogenic
impurity in a CQD is given by

Eb = |�E (1)
in | + |�E (1)

out|

Eb = e2

4π
√

2

(
2

εin
+ 1

εout

)
1

R
. (26)

Limiting Case

In the limit when dielectric mismatch becomes
infinitely high, i.e. εout → ∞, the expression for bind-
ing energy is

Eb = |�E (1)
in | = 2e2

4πεin
√

2R
. (27)

This is the situation when the shallow hydrogenic impu-
rity is totally confined within the CQD. This is akin to
infinite potential confinement where the band offset is
assumed to be infinitely high. It is thus seen that result
of the binding energy under the limiting condition of
infinite dielectric mismatch for εout → ∞ leads to the
same result of binding energy already obtained by others
[38] under infinite potential confinement.

Figure 2. Variation of impurity binding energy with radius
of the CQD for impurity lying inside and outside the dot.
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Figure 3. Variation of total binding energy of the impurity
with radius of the CQD.

3. Results and discussion

To compute the impurity binding energy, the parame-
ters used for GaAs and Alx Ga1−x As with x = 0.7,
rel. dielectric constants εin = 13.18 and εout = 10.996
respectively (where, εout = 13.18 − 3.12x) [39] gives
the Bohr radius as 10.4 nm. For the perturbation calcu-
lation to be valid, the quantized energy should be greater
than the Coulombic interaction between the electron and
the impurity. This implies that the radius of the QD must
be sufficiently smaller than the Bohr radius. The pertur-
bation calculation even for QDs of radius larger than
twice the Bohr radius with error remaining within 1%
is sufficiently accurate [40]. In the present analysis, we
have restricted our calculation for CQD with dot radius
upto 20 nm. In this paper, figure 2 shows the variation
of impurity binding energy with dot radius for impurity
lying inside and outside the dot and figure 3 shows the
variation of total binding energy of the impurity with
dot radius.

4. Conclusion

In this paper, the impurity binding energy has been
calculated by following perturbation method for a shal-
low hydrogenic impurity in inhomogeneous cylindrical
quantum dots having finite dielectric mismatch in the
structure. The computed results show that the impurity
binding energy is quite sensitive to the dot size, i.e.
the binding energy of the impurity decreases with the
increase in dot size. It is seen that result of the binding
energy under the limiting condition of infinite dielectric
mismatch (εout → ∞) in the heterostructure leads to
the result already obtained for infinite potential confine-
ment by others. The binding energy of the hydrogenic
impurity becomes maximum for an on-axis impurity,
i.e. when the radius of the CQD tends to zero.
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