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Abstract. In this paper, we consider the (2+1) nonlinear fractional heat equation with non-local integral terms
and investigate two different cases of such non-local integral terms. The first has to do with the time-dependent
non-local integral term and the second is the space-dependent non-local integral term. Apart from the nonlinear
nature of these formulations, the complexity due to the presence of the non-local integral terms impelled us to
use a relatively new analytical technique called q-homotopy analysis method to obtain analytical solutions to both
cases in the form of convergent series with easily computable components. Our numerical analysis enables us to
show the effects of non-local terms and the fractional-order derivative on the solutions obtained by this method.
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1. Introduction and preliminaries

The heat equation in one or m dimensions has been
studied extensively and one can find the formulation
and solutions of such problems in Carslaw and Jaeger
[1]. In these problems, the thermal diffusivity of the
medium is either assumed to be constant, or in the case
of non-homogeneous medium, as a function of position
or time. The homogeneous equation in such cases is
given as

ut − � · (D�u) = 0, (1)

where D is the thermal diffusivity. However, in many
cases the thermal diffusivity is found to be dependent
on temperature (see Ozisik [2] in particular) and the
thermal properties may be proportional to the temper-
ature. In such a case, the nonlinear heat equation is
given as

∂u

∂t
+ ∂

∂x

(
D(u)

∂u

∂x

)
+ ∂

∂y

(
D(u)

∂u

∂y

)
= 0. (2)

Such problems have been studied from Lie symmetry
point of view by Ahmad et al in [3]. An interesting case

with a non-local term has been studied by Bokhari et al
in [4,5].

The subject of this paper is a nonlinear fractional
two-dimensional heat equation with two types of non-
local terms. Though the non-integer (fractional) deri-
vative is as old as the integer (classical) derivative, it is
only recently that many researchers started seeing the
importance of the former in real-life models. The enor-
mous usefulness of this type of derivative in explaining
some phenomena which cannot be modelled with inte-
ger derivative has given it recognition over the past few
decades. Some of these applications have been explai-
ned in recent publications by many researchers such as
Caputo [6]. He showed how he used the modified form
of the Darcy’s law to incorporate the memory term
to model transport through porous media. Cooper and
Cowan [7] illustrated on how being able to calculate
any order of derivative allows the maximum order to be
used that is commensurate with the noise levels. This
then enabled them to achieve the optimum spatial reso-
lution in geophysical data. Many other applications can
be found in reactive flows and semiconductors, meteo-
rology, ground water flow, cancer tumor with treatment
profile and astrophysics [8–11].
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Several researchers have worked to obtain analytical
solutions of nonlinear differential equations including
fractional type, due to the complexity involved and
due to the fact that many such problems do not have
exact solutions. The problems we are considering here
are nonlinear but the presence of non-local integral
terms makes them more interesting in situations where
input due to non-local source is present. This paper
uses one of the powerful analytical methods known
as q-homotopy analysis method to obtain analyti-
cal solutions to nonlinear fractional two-dimensional
heat equation, with two types of non-local terms; see
[12–14] for details. We also gave some numerical illus-
trations to show the effect of non-local term and the
fractional order on the series solution obtained. We
present a lemma and associated definitions.

Lemma 1.1. Let t ∈ (a, b]. Then[
Iα
a (t − a)β

]
(t)

= �(β +1)

�(β +α +1)
(t −a)β+α, α � 0, β >0,(3)

[
Dα

a (t − a)β
]
(t)

= �(β +1)

�(β −α +1)
(t −a)β−α, α � 0, β >0.(4)

The operators Iα and Dα are defined as

Iαf (t)= 1

�(α)

∫ t

0
(t − τ)α−1f(τ)dτ, t > 0, α > 0,

Dαf (t) = I 1−αDf (t), D = d

dt
,

where � is the gamma function, 0 < α ≤ 1 and
I 0f (t) = f (t). Also we denote Dα = ∂α/∂tα .

2. q-Homotopy analysis method (q-HAM)

Here, we consider a relatively new but well-known
method called q-homotopy analysis method. The main
difference between this method and classical homotopy
analysis method is briefly highlighted here. The reader
is encouraged to see [12–14] for detail.

Differential equation of the form
N

[Dα
t u(x, t)

] − f (x, t) = 0 (5)

is considered, where N is a non-linear operator, f

is a known function and u is an unknown function.
The zeroth-order deformation equation is constructed
to generalize the original homotopy method as

(1 − nq)L(�(x, t; q) − u0(x, t))

= qhH(x, t)
(
N[Dα

t �(x, t; q)] − f (x, t)
)
, (6)

where n � 1, q ∈ [0, 1/n] denotes the so-called
embedded parameter, L ia an auxiliary linear opera-
tor, h �= 0 is an auxiliary parameter and H(x, t) is a
non-zero auxiliary function.

It is clearly seen that when q = 0 and q = 1/n,
eq. (6) becomes

�(x, t; 0) = u0(x, t) and �

(
x, t; 1

n

)
= u(x, t)

(7)

respectively. So, as q increases from 0 to 1/n, the solu-
tion φ(x, t; q) varies from the initial guess u0(x, t) to
the solution u(x, t).

Therefore, we have the q-HAM series representation
as

u(x, t) = u0(x, t) +
∞∑

m=1

um(x, t)

(
1

n

)m

. (8)

Remark 2.1. The presence of the factor (1/n)m gives
more chances for better convergence, faster than the
solution obtained by the standard homotopy method.
Of course, when n = 1, the method is called the
standard homotopy method. The complete details of
qHAM can be explored in references cited earlier.

3. Nonlinear fractional 2D heat equation with
non-local integral terms

We consider nonlinear fractional two-dimensional heat
equation with different non-local integral terms in this
section. The aim is to obtain analytical solutions of
these types of problems using q-homotopy analysis
method in series form.

3.1 Case 1: Time-dependent non-local integral term

Consider

∂αu

∂tα
= ∂

∂x

(
u
∂u

∂x

)
+ ∂

∂y

(
u
∂u

∂y

)

−λ

∫ t

0
u(x, y, τ )dτ (9)

with initial condition

u(x, y, 0) = ea(x+y). (10)

We choose the linear operator as

L[φ(x, y, t; q)] = Dα
t φ(x, y, t; q),

with a property that L[k] = 0, k is constant, where
Dα

t = ∂α/∂tα .



Pramana – J. Phys. (2016) 87: 51 Page 3 of 6 51

We use initial approximation u0(x, y, t) = ea(x+y)

and define non-linear operator as

N[φ(x, y, t; q)]
= Dα

t φ(x, y, t; q) − φφxx(x, y, t; q)

− (φx(x, y, t; q))2 − φφyy(x, y, t; q)

−(
φy(x, y, t; q)

)2 +λ

∫ t

0
φ(x, y, τ ; q)dτ.

By the q-HAM method, using H(x, y, t) = 1, solution
to eq. (9) for m � 1 becomes

um(x, y, t) = χ∗
mum−1 + hIα

t [Rm(	um−1)], (11)

with initial condition for m � 1, um(x, 0) = 0, χ∗
m is

as defined in eq. (16) of [15] and
Rm (	um−1)

= Dα
t u(m−1) −

m−1∑
k=0

uk(um−1−k)xx

−
m−1∑
k=0

(uk)x(um−1−k)x −
m−1∑
k=0

uk(um−1−k)yy

−
m−1∑
k=0

(uk)y(um−1−k)y +λ

∫ t

0
um−1(x, y, τ )dτ.

(12)

We therefore obtain components of the solution using
q-HAM successively as follows:

u1(x, y, t)

= χ∗
1 u0 + hIα

t

[
Dα

t u0 − u0(u0)xx − (u0)
2
x

− u0(u0)yy − (u0)
2
y + λ

∫ t

0
u0(x, y, τ )dτ

]

= − 4a2he2a(x+y) tα

�(1 + α)

+ λhea(x+y) t1+α

�(2 + α)
. (13)

u2(x, y, t)

=χ∗
2 u1 +hIα

t

[Dα
t u1 −u0(u1)xx − u1(u0)xx

− 2(u0)x(u1)x − u0(u1)yy

]

+ hIα
t

[
− u1(u0)yy − 2(u0)y(u1)y

+ λ

∫ t

0
u1(x, y, τ )dτ

]

= −4a2(n + h)he2a(x+y) tα

�(1 + α)

+λ(n + h)hea(x+y) t1+α

�(2 + α)

+72a4h2e3a(x+y) t2α

�(1 + 2α)
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�(2 + 2α)

+λ2h2ea(x+y) t2+α

�(3 + α)
. (14)

In the same way, um(x, t) for m = 4, 5, 6, . . . can
be obtained using symbolic mathematics package/
symbolic computation software such as Mathematica.
For example, to compute u3(x, t), the following for-
mula is used:

u3(x, y, t) = χ∗
3 u2 +hIα

t

[
Dα

t u2 −u0(u2)xx −u1(u1)xx

− u2(u0)xx − 2(u0)x(u2)x − (u1)
2
x

]

+ hIα
t

[
− u0(u2)yy −u1(u1)yy −u2(u0)yy

− 2(u0)y(u2)y − (u1)
2
y

]

+ hIα
t

[
λ

∫ t

0
u2(x, y, τ )dτ

]
.

Then, the series solution expression by q-HAM can be
written as

u(x, t; n; h) = ekx +
∞∑
i=1

ui(x, t; n; h)

(
1

n

)i

, (15)

which is an appropriate solution to the problem (9) in
terms of convergence parameter h and n.

3.2 Case 2: Space-dependent non-local integral term

Consider

∂αu

∂tα
= ∂

∂x

(
u
∂u

∂x

)
+ ∂

∂y

(
u
∂u

∂y

)

− σ

∫ x

0

∫ y

0
u(η, γ, t)dγ dη (16)

with initial condition

u(x, y, 0) = a sin(xy). (17)
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Following similar procedure as in (9), using initial
approximation u0(x, y, t) = a sin(xy) and changing
the non-local integral term appropriately as

σ

∫ x

0

∫ y

0
φ(η, γ, t; q)dγ dη,

we obtain the q-HAM series solution for this case as

u1(x, y, t)

= χ∗
1 u0 + hIα

t

[
Dα

t u0 − u0(u0)xx

−(u0)
2
x − u0(u0)yy − (u0)

2
y

]

+ hIα
t

[
σ

∫ x

0

∫ y

0
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]

= σahx
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tα
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. (18)
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0
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]
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...

Hence, the series solution expression by q-HAM can
be written as

u(x, t; n; h) = a sin(xy) +
∞∑
i=1

ui(x, t; n; h)

(
1

n

)i

.

(20)

4. Numerical results and discussion

In this section, we present numerical analysis of the
approximate solution obtained for both cases consid-
ered and observe the effect of non-local terms λ and σ

and the fractional-order α on the solution given by U2.
The behaviour of the solution given by U2 for differ-

ent values of α is displayed in figures 1 and 2 for Case1
and figures 3 and 4 for Case 2, with the values a = 0.2,
h = −0.8 and n = 1 for a fixed time t = 0.2.

Figures 5 and 6 and figures 7 and 8 show the effect of
different values of the non-local term λ and σ respec-
tively. The plots here are done with a = 0.2, h = −0.8
and n = 1 for a fixed time t = 0.2.

Remark 4.1. Figures 5 and 6 show that the increasing
or decreasing trend is affected by the choice of the sign
of lambda as it determines whether the heat is given or
lost. However, the choice of alpha or fractional order
of diffusion term does not affect the trend .

Remark 4.2. We observe also for Case 2 that the sign
of σ greatly changes the profile of the solution and this

Figure 1. Plots for different values of α when x is fixed for
Case 1.

Figure 2. Plots for different values of α when y is fixed for
Case 1.
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Figure 3. Plots for different values of α when x is fixed for
Case 2.

Figure 4. Plots for different values of α when y is fixed for
Case 2.

Figure 5. U2 plot for different values of λ when x is fixed.

can be seen in figures 7 and 8. In this case, choosing
space-dependent non-local term could be very interest-
ing due to its effect on the solution.

Remark 4.3. We remark here that the detail about the
way to choose appropriate h for fast convergence of
the series solution could be obtained through h-curve
(see [15] for details).

Figure 6. U2 plot for different values of λ when y is fixed.

Figure 7. U2 plot for different values of σ when x is fixed.

Figure 8. U2 plot for different values of σ when y is fixed.
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