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Abstract. A vast literature on the theory and phenomenology of two-Higgs-doublet models (2HDM) exists
since long. However, the present situation demands a revisit of some 2HDM properties. Now that a 125 GeV
scalar resonance has been discovered at the LHC, with its couplings to other particles showing increasing affinity
to the Standard Model Higgs-like behaviour, the 2HDM parameter space is more squeezed than ever. We briefly
review the different parametrizations of the 2HDM potential and discuss the constraints on the parameter space
arising from the unitarity and stability of the potential together with constraints from the oblique electroweak
T -parameter. We also differentiate the consequences of imposing a global continuous U (1) symmetry on the
potential from a discrete Z2 symmetry.
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1. Introduction

The discovery of a new boson in July 2012 by the
ATLAS [1] and CMS Collaborations [2] of the CERN
Large Hadron Collider (LHC) is undoubtedly the great-
est achievement of this decade in the field of Particle
Physics. This is most likely ‘the’ Higgs boson [3–7], the
so far eluding final missing piece of the Standard Model
(SM). But the SM has certain inadequacies. For exam-
ple, it cannot account for observations like neutrino
oscillations and dark matter. It cannot also provide ade-
quate matter–antimatter asymmetry of the Universe.
These constitute the primary motivation to look for
avenues beyond the SM, which we often call BSM sce-
narios. The SM relies on the minimal choice of a single
SU(2) scalar doublet acquiring a vacuum expectation
value (VEV) for giving masses to all the particles
(except the neutrino) contained in the SM. One natural
direction towards constructing BSM scenarios is to
extend the SM scalar sector. In doing so, one may run
into the risk of altering the tree-level value of the pre-
cisely measured oblique electroweak parameter ρ (or,
equivalently T). If we construct an SU(2) × U(1) gauge
theory with N number of scalar multiplets, then the
general expression for the tree-level ρ-parameter is [8]

ρtree =
∑N

i=1

{
Ti(Ti + 1) − (Y 2

i /4)
}
vi

1
2

∑N
i=1Y

2
i vi

, (1)

where Ti and Yi denote the weak isospin and
hypercharge of the ith scalar multiplet respectively,
and vi is the VEV acquired by the neutral component
of that multiplet. It is easy to verify that if the scalar
sector contains only SU(2) singlets (Ti = 0) and dou-
blets (Ti = 1/2) with Yi = 0 and ±1 respectively, then
ρtree = 1 is automatically satisfied without requiring
any fine-tuning among the VEVs. This conforms to
the experimental value of ρ, which is very close to
unity [9]. In this article we restrict our discussions to
the doublet extensions only. The simplest extension
of this type is two-Higgs-doublet model (2HDM) [10],
which has received a lot of attention mainly because
minimal supersymmetry relies on it. 2HDM scenarios
have also been investigated to look for additional
sources of CP violation for generating baryon asymme-
try of the Universe of sufficient size [11]. In a general
2HDM, both the scalar doublets, which we call �1 and
�2, can couple to fermions of both types with T3 =
1/2 (up-type) and −1/2 (down-type). The up- and
down-type Yukawa matrices are not, in general, simul-
taneously diagonalizable. This will introduce flavour
changing neutral currents (FCNC) mediated by the
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neutral scalars at tree-level. It was shown by Glashow
and Weinberg [12], and independently by Paschos [13],
that such tree-level FCNC can be avoided if fermions of
a particular electric charge receive their masses from a
single scalar doublet. This prescription can be realized
by introducing a discrete or a continuous symmetry that
apply on the scalars �1 and �2 as well as on the fer-
mions. Under the discrete symmetry, one of the scalars
is even (�2 → �2) and the other is odd (�1 → −�1).
There are four different possibilities for assigning Z2

parities to the fermions which can avoid tree-level
FCNCs, i.e. ensure natural flavour conservation, so that
Glashow–Weinberg–Pashcos theorem holds true. These
correspond to the following four types of 2HDMs:

(i) Type I: All quarks and leptons couple to only one
scalar doublet �2.

(ii) Type II: �2 couples to up-type quarks, while �1

couples to down-type quarks and charged lep-
tons (minimal supersymmetry conforms to this
category).

(iii) Type X (or ‘lepton-specific’): �2 couples to all
quarks, while �1 couples to all leptons.

(iv) Type Y (or ‘flipped’): �2 couples to up-type quarks
and leptons, while �1 couples to down-type
quarks.

There is also the option for preventing tree-level FCNC
by assuming the up- and down-type Yukawa matrices
to be proportional to each other [14]. However, the radi-
ative stability of the absence of FCNC couplings in these
models is not guaranteed [15]. The Branco–Grimus–
Lavoura (BGL) model [16] does on the other hand
admit tree-level FCNC couplings. But those couplings
are related to the off-diagonal entries of the Cabibbo–
Kobayashi–Maskawa (CKM) matrix and are naturally
suppressed. The phenomenology of the BGL scenario
has been studied in detail in refs [17,18]. A concep-
tually similar idea for suppressing FCNC with discrete
symmetries was pursued in [19]. In this article, we shall
not elaborate any further on the FCNC issues, as we
shall not discuss the Yukawa sector of 2HDM.

In the subsequent sections, we analyse the scalar
potential, identify the physical scalar eigenstates and
reach the limit in which one physical scalar resembles
the 125 GeV Higgs boson. For simplicity, we assume
all the parameters in the potential to be real so that CP
is manifestly conserved in the scalar sector. For discus-
sions on CP violation in 2HDM scalar sector we refer
the reader to refs [20–22], where conditions for CP
violation/conservation have been diagnosed in detail.

With these assumption, we derive the relations among
the parameters of the potential that need to be satis-
fied to ensure that the potential is stable, i.e. it is
bounded from below, at the weak scale. We then derive
the constraints arising from the requirement of unitar-
ity by studying the scattering amplitudes of 2 → 2
states involving the scalars and the gauge bosons. After
that, we combine the stability and unitarity constraints
to impose numerical constraints on the physical scalar
masses and other parameters. Now that one scalar has
been observed around 125 GeV, constraints on the re-
maining parameter space have become more stringent.
We conclude by highlighting some salient features that
arise from the above considerations.

2. The scalar potential

There are two equivalent notations that are used in the
literature to write the 2HDM scalar potential with a
softly broken Z2 symmetry (�1 → �1, �2 → −�2):

Parametrization 1:

V (�1, �2) = m2
11�

†
1�1 + m2

22�
†
2�2

−(m2
12�

†
1�2 + h.c.) + β1

2
(�

†
1�1)

2

+ β2

2
(�

†
2�2)

2 + β3(�
†
1�1)(�

†
2�2)

+ β4(�
†
1�2)(�

†
2�1)

+
{

β5

2
(�

†
1�2)

2 + h.c.

}
. (2)

Parametrization 2:

V = λ1

(
�

†
1�1 − v2

1

2

)2

+ λ2

(
�

†
2�2 − v2

2

2

)2

+ λ3

(
�

†
1�1 + �

†
2�2 − v2

1 + v2
2

2

)2

+ λ4((�
†
1�1)(�

†
2�2) − (�

†
1�2)(�

†
2�1))

+ λ5

(
Re �

†
1�2 − v1v2

2

)2 + λ6

(
Im �

†
1�2

)2
. (3)

The bilinear terms proportional to m2
12 in eq. (2) or λ5

in eq. (3) break the Z2 symmetry softly. The presence
of these soft breaking terms has implications in ensur-
ing decoupling behaviour of these models (briefly dis-
cussed in the concluding section). Note that when we
minimize the potential of eq. (2), the two minimization
conditions can be used to trade m2

11 and m2
22 for v1 and

v2 and the potential can be cast in the form of eq. (3).
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The connections between the parameters of eqs (2) and
(3) are given below:

m2
11 = −(λ1v

2
1 + λ3v

2); m2
22 = −(λ2v

2
2 + λ3v

2);
m2

12 = λ5

2
v1v2; β1 = 2(λ1 + λ3);

β2 = 2(λ2 + λ3); β3 = 2λ3 + λ4;
β4 = λ5 + λ6

2
− λ4; β5 = λ5 − λ6

2
. (4)

In eq. (4), v =
√

v2
1 + v2

2 = 246 GeV, where v1 and v2

are the VEVs of the two doublets �1 and �2 respec-
tively. For most of this article, we choose to work with
the notation of eq. (3).

Before we proceed further, we comment on the rela-
tive status of the two parametrizations of the potential.
The structure in ‘Parametrization 1’ is more general
than that in ‘Parametrization 2’. It is possible to go
from ‘1’ to ‘2’ but not the other way. In the second one
it has been assumed that both scalars receive VEVs,
while for the first this need not be the case. So the inert
doublet scenario can be realized only in the first para-
metrization, e.g. in a simple illustrative scenario, when
the dimensionless couplings β2 = β3 = β4 = β5 = 0,
the mass mixing parameter m2

12 = 0 and m2
22 > 0.

Then the second Higgs doublet �2 does not acquire
any VEV, and the SM scalar potential is recovered with
the relation v2 = v2

1 = −m2
11/β1. On the other hand,

if both doublets do indeed get VEVs, there is a cor-
respondence between the parameters in the two cases,
which we have explicitly written down in eq. (4).

2.1 Physical eigenstates

We express the scalar doublets as

�i = 1√
2

( √
2w+

i

(hi + vi) + izi

)
. (5)

Then we construct the mass matrices using eq. (3). As
we have assumed all the potential parameters to be real,
there will be no bilinear mixing term of the form hizj .
As a result, the neutral mass eigenstates will also be
the eigenstates of CP. For the charged sector we get the
following mass matrix:

V
charged
mass = (

w+
1 w+

2

)
M2

C

(
w−

1
w−

2

)
,

with

M2
C = λ4

2

(
v2

2 −v1v2

−v1v2 v2
1

)
. (6)

Diagonalizing M2
C we obtain a physical charged Higgs

pair (H±) and a pair of charged Goldstones (ω±) as
follows:(

ω±
H±

)
=

(
cos β sin β

− sin β cos β

) (
w±

1
w±

2

)
, (7)

where tan β = v2/v1. The mass of the charged Higgs
pair (H±) is found to be

m2
H+ = λ4

2
v2. (8)

Similarly, for the pseudoscalar part one can easily find

V CP-odd
mass = (

z1 z2
) 1

2
M2

P

(
z1
z2

)
,

with

M2
P = λ6

2

(
v2

2 −v1v2

−v1v2 v2
1

)
. (9)

The diagonalization in CP-odd sector is similar to
that in the charged sector. Here we shall get a phys-
ical pseudoscalar (A) and a neutral Goldstone (ζ ) as
follows:(

ζ

A

)
=

(
cos β sin β

− sin β cos β

) (
z1
z2

)
. (10)

The mass of the pseudoscalar is given by

m2
A = λ6

2
v2. (11)

For the CP-even scalar part we find

V CP-even
mass = (

h1 h2
) 1

2
M2

S

(
h1
h2

)
,

with

M2
S =

(
AS BS

BS CS

)
, (12a)

where

AS = 2(λ1 + λ3)v
2
1 + λ5

2
v2

2, (12b)

BS = 2

(
λ3 + λ5

4

)
v1v2, (12c)

CS = 2(λ2 + λ3)v
2
2 + λ5

2
v2

1 . (12d)

The masses of the physical eigenstates, H (heavier)
and h (lighter), can be readily obtained as

m2
H = 1

2

[
(AS + CS) +

√
(AS − CS)2 + B2

S

]
, (13a)

m2
h = 1

2

[
(AS + CS) −

√
(AS − CS)2 + B2

S

]
. (13b)
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The physical scalars are obtained by rotating the origi-
nal basis by an angle α:(

H

h

)
=

(
cos α sin α

− sin α cos α

)(
h1
h2

)
. (14)

This rotation angle is defined through the following
relation:

tan 2α = 2BS

AS−CS

= 2(λ3 +(λ5/4)) v1v2

λ1v
2
1−λ2v

2
2+ (λ3+(λ5/4))(v2

1−v2
2)

. (15)

Note that there were eight parameters to start with: v1,
v2 and six lambdas. We trade v1 and v2 for v and tan β.
All the lambdas except λ5 can be traded for four phys-
ical scalar masses and α. The relations between these
two equivalent sets of parameters are given below:

λ1 = 1

2v2 cos2 β

[
m2

H cos2 α +m2
h sin2 α

− sin α cos α

tanβ
(m2

H − m2
h)

]

− λ5

4
(tan2 β − 1), (16a)

λ2 = 1

2v2 sin2 β

[
m2

h cos2 α + m2
H sin2 α

− sin α cos α tan β
(
m2

H − m2
h

)]
− λ5

4
(cot2 β − 1), (16b)

λ3 = 1

2v2

sin α cos α

sin β cos β
(m2

H − m2
h) − λ5

4
, (16c)

λ4 = 2

v2
m2

H+, (16d)

λ6 = 2

v2
m2

A. (16e)

Among these, v is already known (246 GeV) and if
we assume that the lightest CP-even Higgs is what
has been observed at the LHC, then mh is also known
(125 GeV). The rest of the parameters need to be
constrained from theoretical as well as experimental
considerations.

2.2 The alignment limit

The alignment limit corresponds to recovering a CP-
even scalar mass eigenstate with exactly the same
gauge, Yukawa and self-couplings at tree-level as those
of the SM Higgs bosons. To start with, it is instructive

to look at the trilinear gauge-Higgs couplings which
stem from the Higgs kinetic terms:

L scalar
kin = |Dμ�1|2 + |Dμ�2|2

� g2

2
W+

μ Wμ−(v1h1 + v2h2). (17)

Clearly, the combination

H 0 = 1

v
(v1h1 + v2h2) (18)

will have gauge couplings exactly as the SM Higgs
boson and its orthogonal combination (R) will not have
any RZZ or RWW trilinear couplings. H 0 also mim-
ics the SM Higgs in Yukawa couplings. The states H 0

and R can be obtained by applying the same rotation as
in the charged and pseudoscalar sectors:(

H 0

R

)
=

(
cos β sin β

− sin β cos β

) (
h1
h2

)
. (19)

Note that this SM-like state H 0 is not guaranteed to be
a mass eigenstate in general. The alignment limit spe-
cifically implies the condition under which H 0 coin-
cides with one of the CP-even physical eigenstates. To
go to the physical basis (H, h) from (H 0, R) one needs
the following rotation:

H = cos(β − α)H 0 − sin(β − α)R, (20a)

h = sin(β − α)H 0 + cos(β − α)R. (20b)

Clearly, if we want the lightest CP-even scalar h to
posses SM-like couplings, we must set sin(β −α) = 1,
which is the definition of the alignment limit. Thus, by
going to this limit, one more parameter is reduced.

Now we come to the important question of how cru-
cial the alignment limit is in the context of current LHC
Higgs data. Many global fit results in view of the recent
data can be found in [23–28]. In figure 1 we display the
results of a recent analysis [23]. The orange part repre-
sents the 95% CL allowed region from measurements
of the Higgs signal strengths in various channels (for
the latter, see figure 2). As the data are compatible
with the SM predictions, the alignment limit is pre-
ferred. The horizontal widths of the allowed regions
reflect the present accuracy of measurements. In ref.
[28], it has been shown how this width will shrink if
future measurements continue to agree more with the
SM predictions with greater accuracy, thus pushing us
closer to the alignment limit. The SM alignment limit
has also been motivated by employing different global
symmetries of the scalar potential [29].
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Figure 1. The red, orange and yellow regions represent the 68%, 95% and 99% CL allowed regions, respectively, coming
from the Higgs signal strength measurements at the LHC. The (a) ((b)) panel shows the situation for Type I (II) model. The
star-marked points correspond to the best-fit values (figures adapted from [23]).

3. Stability constraints

To discuss the stability of the potential, it is convenient
to work with the notation of eq. (2). Here we derive the
constraints on parameters βi such that the scalar poten-
tial V is bounded from below in any direction in the
field space [32,33]. It is sufficient to examine the quar-
tic terms of the scalar potential (which we denote by
V4) because only this part of the potential will be dom-
inant for large values of the field components of �1 and
�2. We define a ≡ �

†
1�1, b ≡ �

†
2�2, c ≡ Re �

†
1�2,

d ≡ Im �
†
1�2 and note that

ab ≥ c2 + d2. (21)

Using these definitions we can rewrite the quartic part
of the scalar potential as follows [34]:

V4 = 1

2
(
√

β1a − √
β2b)2 + (β3 + √

β1β2)

× (ab − c2 − d2) + 2(β3 + β4 + √
β1β2)c

2

+ (Re β5 − β3 − β4 − √
β1β2)(c

2 − d2)

− 2cd Im β5. (22)

Although we assume all the potential parameters to be
real for our phenomenological studies, our arguments
on stability do not depend on whether β5 is real or com-
plex. We must ensure that V4 never becomes infinitely
negative in any direction of the field space, i.e., for any
choice of eight independent field parameters (four of
�1 and four of �2). As �1 and �2 are two-component
column matrices, it is possible to choose arbitrary non-
zero values for a and b even when we make c = d = 0.
But if a and/or b becomes zero, then c = d = 0
automatically. Keeping these in mind, we now proceed

to find the stability constraints, i.e. the conditions under
which the potential is bounded from below [32].

(i) Consider the field direction b = 0 (and therefore
c = d = 0) and a → ∞; then V4 = (β1/2)a2.
So, V4 is not largely negative requires

β1 ≥ 0 . (23)

(ii) Consider the field direction a = 0 (and therefore
c = d = 0) and b → ∞; then V4 = (β2/2)b2. So,
V4 is not largely negative requires

β2 ≥ 0 . (24)

(iii) Consider the field direction along which a =√
β2/β1b (so that the first term in eq. (22) van-

ishes) and c = d = 0. In addition to this we go
to large field values in that direction, i.e., a, b →
∞. Then, V4 = (β3 + √

β1β2)ab. Now, as a, b >

0 by definition, the condition for the potential not
to hit (−∞) becomes

β3 + √
β1β2 ≥ 0. (25)

(iv) Again consider the field direction in which a =√
β2/β1b along with ab = c2 + d2. Along this

direction, V4 is of the form

V4 = Pc2 + 2Qcd + Rd2, (26a)

where

P = Re β5 + 	, (26b)

Q = −Im β5, (26c)

R = −Re β5 + 	, (26d)

with

S = β3 + β4 + √
β1β2 . (26e)
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Figure 2. Current measurements of the Higgs signal
strengths into different channels by the (a) ATLAS [30] and
(b) CMS [31] Collaborations.

As c and d are still arbitrary, by choosing d = 0,
c → ∞ and c = 0, d → ∞ successively, we
require

P = Re β5 + S ≥ 0, (27a)

R = −Re β5 + S ≥ 0, (27b)

and hence

S ≥ 0. (27c)

To have another condition, let us recast eq. (26a) into
the following form:

V4 = P

(
c + Q

P
d

)2

+
(

R − Q2

P

)
d2. (28)

We can now choose a direction along which c =
−Q/Pd with d → ∞ so that we have the following
condition:

R − Q2

P
> 0 ⇒ PR > Q2. (29)

For the last step, remember that P > 0 (eq. (27a)) so
that we can multiply both sides by P without flipping
the inequality sign. After substituting for P , Q and R

we get from eq. (29):

S2 − (Re β5)
2 > (Im β5)

2 ⇒ S2 > |β5|2 , (30a)

S > |β5| , (30b)

where, in the last step we have used the fact that S > 0
(eq. (27c)). As |β5| > ±β5, 0, eq. (30b) puts a stronger
constraint on S than eq. (27). Therefore, substituting
for S, eq. (30b) becomes

β3 + β4 + √
β1β2 > |β5| . (31)

We now collect eqs (23)–(25) and (31) together and,
using eq. (4), express them in terms of lambdas for later
use:

λ1 + λ3 > 0 , (32a)

λ2 + λ3 > 0 , (32b)

(2λ3 + λ4) + 2
√

(λ1 + λ3)(λ2 + λ3) > 0, (32c)

2λ3 + λ5 + λ6

2
− |λ5 − λ6|

2

+ 2
√

(λ1 + λ3)(λ2 + λ3) > 0. (32d)

These conditions are both necessary and sufficient for
ensuring stability of the electroweak vacuum. This has
also been shown through rigorous analysis in [35,36].
In addition to these stability conditions, one also needs
to ensure the positivity of the physical scalar masses
[33,37]. Additionally, one might also wish to ensure
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that the minimum is indeed the global minimum. The
condition for the latter is given by [38]

m2
12

(
m2

11 − m2
22

√
β1

β2

) (
tan β − 4

√
β1

β2

)
> 0. (33)

4. Unitarity constraints

In this section we study the energy growth of scattering
amplitudes involving the scalar states. Any scattering
amplitude can be expanded in terms of the partial
waves as follows:

M(θ) = 16π

∞∑
�=0

a�(2� + 1)P�(cos θ), (34)

where θ is the scattering angle and P�(x) is the
Legendre polynomial of order �. The prescription is
as follows: once we calculate the Feynman amplitude
of a certain 2 → 2 scattering process, each of the par-
tial wave amplitude (a�), in eq. (34), can be extracted
by using the orthonormality of the Legendre polynomi-
als. In the context of SM, the pioneering work has been
done by Lee, Quigg and Thacker (LQT) [39]. They
have analysed several two-body scatterings involving
longitudinal gauge bosons and physical Higgs in the
SM. All such scattering amplitudes are proportional to
Higgs quartic coupling in the high energy limit. The
� = 0 partial wave amplitude (a0) is then extracted
from these amplitudes and cast in the form of what
is called an S-matrix having different two-body states
as rows and columns. The largest eigenvalue of this
matrix is bounded by the unitarity constraint, |a0| < 1.
This restricts the quartic Higgs self-coupling and there-
fore the Higgs mass to a maximum value.

The procedure has been extended to the case of a
2HDM scalar potential [40–44]. Here also same types
of two-body scattering channels are considered. Thanks
to the equivalence theorem [45,46], we can use unphys-
ical Higgses instead of actual longitudinal components
of the gauge bosons when considering the high-energy
limit. The diagrams containing trilinear vertices will be
suppressed by a factor of E2 coming from the interme-
diate propagator. Thus, they do not contribute at high
energies, and only the quartic couplings contribute.
Since we are interested only in the eigenvalues of the
S-matrix, we may, for convenience, proceed with the
original fields of eq. (3) instead of the physical mass
eigenstates.

To provide clarity, let us outline the method of
obtaining the constraints. As already argued, only the

dimensionless quartic couplings will contribute to the
amplitudes at high energies. As a result, only � = 0 par-
tial amplitude (a0) will receive nonzero contribution
from the leading-order terms in the scattering ampli-
tudes. The task is to find the expressions of a0 for every
possible 2 → 2 scattering process and cast them in the
form of an S-matrix which is constructed by taking the
different two-body channels as rows and columns.
Unitarity will restrict the magnitude of each of the
eigenvalues of this S-matrix to lie below unity.

First, we identify all the possible two-particle chan-
nels. These two-particle states are made of the fields
w±

k , hk and zk corresponding to the parametrization of
eq. (5). For our calculation, we consider neutral com-
binations out of the two-particle states (e.g., w+

i w−
j , hihj ,

zizj , hizj ) and singly-charged two-particle states (e.g.,
w+

i hj , w+
i zj ). In general, if we have n-number of dou-

blets φk (k = 1 , . . . , n) in nHDM scenarios, there will
be (3n2+ n)-number of neutral and 2n2-number of
charged two-particle states. Clearly, the dimensions of
S-matrices formed out of these two-particle states will
be (3n2 + n)× (3n2 + n) and 2n2 × 2n2 for the neutral
and charged cases respectively. The eigenvalues of these
matrices should be bounded by the unitarity constraint.

The neutral channel S-matrix for 2HDM is a 14×14
matrix with the following two-particle states as rows
and columns:

w+
1 w−

1 , w+
2 w−

2 , w+
1 w−

2 , w+
2 w−

1 ,
h1h1√

2
,
z1z1√

2
,
h2h2√

2
,

z2z2√
2

, h1z2, h2z1, z1z2, h1h2, h1z1, h2z2. (35)

The factor of 1/
√

2 associated with the identical parti-
cle states arises due to Bose symmetry. In the most gen-
eral case, finding the eigenvalues of the 14 × 14 matrix
would be a tedious job. But the potential of eq. (3) con-
tains some obvious symmetries in its quartic terms.
These symmetries will allow us to decompose the full
matrix in smaller blocks. Now, each term in the quartic
part of the potential always contains even number of
indices (1 or 2). Consequently, a state x1y1 or x2y2 will
always scatter into x1y1 or x2y2 but not into x1y2 or
x2y1 and vice versa. Furthermore, CP symmetry is con-
served. This implies that a neutral combination hihj or
zizj will never go into hizj . Keeping these facts in mind
we can now decompose the S-matrix in the neutral
sector into smaller blocks as follows:

MN =
⎛
⎝ (M11

N )6×6 0 0
0 (M11

N )2×2 0
0 0 (M12

N )6×6

⎞
⎠ . (36)
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The submatrices are given below:

(M11
N )6×6 =

w+
1 w−

1

w+
2 w−

2
z1z1√

2
h1h1√

2
z2z2√

2
h2h2√

2

w+
1 w−

1 w+
2 w−

2
z1z1√

2
h1h1√

2
z2z2√

2
h2h2√

2⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4(λ1+λ3) 2λ3+ λ5+λ6
2

√
2(λ1+λ3)

√
2(λ1+λ3)

√
2

(
λ3+ λ4

2

) √
2

(
λ3+ λ4

2

)
2λ3+ λ5+λ6

2 4(λ2+λ3)
√

2
(
λ3+ λ4

2

) √
2

(
λ3+ λ4

2

) √
2(λ2+λ3)

√
2(λ2+λ3)√

2(λ1+λ3)
√

2
(
λ3+ λ4

2

)
3(λ1+λ3) (λ1+λ3) λ3+ λ5

2 λ3+ λ6
2√

2(λ1+λ3)
√

2
(
λ3+ λ4

2

)
(λ1+λ3) 3(λ1+λ3) λ3+ λ6

2 λ3+ λ5
2√

2
(
λ3+ λ4

2

) √
2(λ2+λ3) λ3+ λ5

2 λ3+ λ6
2 3(λ2+λ3) (λ2+λ3)

√
2

(
λ3+ λ4

2

) √
2(λ2+λ3) λ3+ λ6

2 λ3+ λ5
2 (λ2+λ3) 3(λ2+λ3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(37a)

(M 11
N )2×2 = h1z1

h2z2

h1z1 h2z2(
2(λ1 + λ3)

λ5−λ6
2

λ5−λ6
2 2(λ2 + λ3)

)
,

(37b)

(M12
N )6×6 =

w+
1 w−

2

w+
2 w−

1

h1z2

h2z1

z1z2

h1h2

w+
1 w−

2 w+
2 w−

1 h1z2 h2z1 z1z2 h1h2⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2λ3 + λ5+λ6
2 λ5 − λ6 − i

2(λ4 − λ6)
i
2(λ4 − λ6)

λ5−λ4
2

λ5−λ4
2

λ5 − λ6 2λ3 + λ5+λ6
2

i
2(λ4 − λ6) − i

2(λ4 − λ6)
λ5−λ4

2
λ5−λ4

2
i
2(λ4 − λ6) − i

2(λ4 − λ6) 2λ3 + λ6
λ5−λ6

2 0 0

− i
2(λ4 − λ6)

i
2(λ4 − λ6)

λ5−λ6
2 2λ3 + λ6 0 0

λ5−λ4
2

λ5−λ4
2 0 0 2λ3 + λ5

λ5−λ6
2

λ5−λ4
2

λ5−λ4
2 0 0 λ5−λ6

2 2λ3 + λ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(37c)

The same exercise can be repeated for the charged two-
particle state combinations. With the singly charged
state combinations, it will be a 8 × 8 matrix which
will take the following block diagonal form:

MC =
(

(M11
C )4×4 0
0 (M12

C )4×4

)
. (38)

The submatrices are given below:

(M11
C )4×4 =

h1w
+
1

h2w
+
2

z1w
+
1

z2w
+
2

h1w
+
1 h2w

+
2 z1w

+
1 z2w

+
2⎛

⎜⎜⎜⎝
2(λ1 + λ3)

λ5−λ4
2 0 − i

2(λ4 − λ6)
λ5−λ4

2 2(λ2 + λ3) − i
2(λ4 − λ6) 0

0 i
2(λ4 − λ6) 2(λ1 + λ3)

λ5−λ4
2

i
2(λ4 − λ6) 0 λ5−λ4

2 2(λ2 + λ3)

⎞
⎟⎟⎟⎠ , (39a)

(M12
C )4×4 =

h1w
+
2

h2w
+
1

z1w
+
2

z2w
+
1

h1w
+
2 h2w

+
1 z1w

+
2 z2w

+
1⎛

⎜⎜⎜⎜⎝
2λ3 + λ4

λ5−λ4
2 0 i

2(λ4 − λ6)

λ5−λ4
2 2λ3 + λ4

i
2(λ4 − λ6) 0

0 − i
2(λ4 − λ6) 2λ3 + λ4

λ5−λ4
2

− i
2(λ4 − λ6) 0 λ5−λ4

2 2λ3 + λ4

⎞
⎟⎟⎟⎟⎠

. (39b)
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The eigenvalues for these matrices are given by

(a) (M11
N )6×6: a±

1 , a±
2 , a±

3 .
(b) (M11

N )2×2: a±
3 .

(c) (M12
N )6×6: b1, b2, b3, b4, b5, with b5 two-fold

degenerate.
(d) (M11

C )4×4: a±
2 , a±

3 .
(e) (M12

C )4×4: b2, b4, b5, b6.

We also display the explicit expressions for these
eigenvalues:

a±
1 = 3(λ1 + λ2 + 2λ3)

±
√

9(λ1−λ2)2+
(
4λ3+λ4+λ5 + λ6

2

)2

, (40a)

a±
2 = (λ1 + λ2 + 2λ3)

±
√

(λ1 − λ2)2 + 1

4
(2λ4 − λ5 − λ6)

2 , (40b)

a±
3 = (λ1 + λ2 + 2λ3)

±
√

(λ1 − λ2)2 + 1

4
(λ5 − λ6)

2 , (40c)

b1 = 2λ3 − λ4 − 1

2
λ5 + 5

2
λ6, (40d)

b2 = 2λ3 + λ4 − 1

2
λ5 + 1

2
λ6, (40e)

b3 = 2λ3 − λ4 + 5

2
λ5 − 1

2
λ6, (40f)

b4 = 2λ3 + λ4 + 1

2
λ5 − 1

2
λ6, (40g)

b5 = 2λ3 + 1

2
λ5 + 1

2
λ6, (40h)

b6 = 2(λ3 + λ4) − 1

2
λ5 − 1

2
λ6. (40i)

Each of the above eigenvalues will be bounded from
the unitarity constraint as

|a±
i |, |bi | ≤ 16π. (41)

5. Numerical constraints on the scalar masses

We now investigate the implications of the above con-
ditions on the physical scalar masses, especially the
nonstandard ones. Figure 3 shows the region allowed
by the combined constraints from unitarity and the
boundedness of the potential for λ5 = 0, i.e., exact Z2
symmetry. Two noteworthy features emerge [47]:

(i) From figure 3a, one can read the upper and lower
limits on tan β as 1/8 < tan β < 8.

(ii) The upper limits on nonstandard scalar masses
are given by: mH, mA, mH+ < 1 TeV.

To understand the origin of the above limits we look
into the eigenvalues of eq. (40). The first two con-
straints for boundedness in eq. (32) can be combined
into

λ1 + λ2 + 2λ3 > 0. (42)

Together with the condition |a±
1 | < 16π, this implies

0 < λ1 + λ2 + 2λ3 <
16π

3
, (43)

⇒ 0 <

(
m2

H − 1

2
λ5v

2
)

(tan2 β + cot2 β)

+ 2m2
h <

32πv2

3
, (44)

where the last expression is obtained from the previ-
ous one by using eq. (16) in the alignment limit. As the
heavier CP-even Higgs mass mH > 125 GeV, a limit on
tan β (as well as cot β) is obtained when λ5 = 0. As the
minimum value of (tan2 β + cot2 β) is 2 when tanβ = 1,
the maximum possible value of mH is obtained for

Figure 3. Allowed region (shown by scattered points) from unitarity and stability for exact Z2 symmetry (λ5 = 0).
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Figure 4. Relaxation of the constraints on tan β for nonzero λ5. Figure 4b should be compared with figure 3a.

tan β = 1. Equation (44) thus explains the tan β-depen-
dent bound on mH as depicted in figure 3a.

To obtain restrictions on the individual masses, mA

and mH+ , we use the following inequalities:

|b1 − b3| ≡ 3|λ6 − λ5| < 32π

⇒
∣∣∣∣m2

A − 1

2
λ5v

2
∣∣∣∣ <

16πv2

3
, (45a)

|b6 − b3| ≡ 3|λ4 − λ5| < 32π

⇒
∣∣∣∣m2

H+ − 1

2
λ5v

2
∣∣∣∣< 16πv2

3
. (45b)

Using eqs (45a) and (45b) we put limits on mA and
mH+ , respectively, when λ5 = 0. Additionally, due to
the inequality

|b1 − b6| ≡ 3|λ6 − λ4| < 32π

⇒ |m2
A − m2

H+| <
16πv2

3
, (46)

we expect the splitting between mA and mH+ to be
always restricted. It is also interesting to note that the
conclusions obtained from eqs (45a), (45b) and (46)
do not depend on the imposition of the alignment
condition.

From eq. (44) we also observe that the allowed space
for tan β is further squeezed if λ5 < 0, but the bound is
relaxed if λ5 > 0. This feature emerges from figure 4a.
In addition to this, we can see from eq. (44) that m2

H

must be close to 1/2λ5v
2 if tan β moderately deviates

from unity. This feature is reflected by the horizontal
tail in figure 4b on both sides of the peak. The width
of the tail is a result of the variation of λ5 in the range
[−15, 15].

From eqs (45a), (45b) and (44) we note that the
upper bounds on the nonstandard scalar masses will be

Figure 5. Effect of nonzero λ5 on the constraints on the nonstandard masses.
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relaxed for λ5 > 0 and get tighter for λ5 < 0. Figure 5
reflects these features.

An interesting alternative arises if instead of Z2 one
imposes a U (1) symmetry under which �1 → �1 and
�2 → eiα�2. This U (1) symmetry needs to be softly
broken to forbid the appearance of an exactly massless
pseudoscalar. This U(1) symmetry, in the quartic terms,
implies β5 = 0 in eq. (2) or λ5 = λ6 in eq. (3). The con-
straints on the scalar masses imposed by the stability
and unitarity conditions in eqs (32) and (40) are plot-
ted in figure 6 for tan β = 1, 5 and 10 by performing
random scan over all nonstandard scalar masses.

The following salient features emerge from the
plots:

(i) There is a correlation between mA and mH which
gets stronger for larger values of tan β. They
become nearly degenerate once tan β > 10. To
understand this, we observe that eq. (44) for λ5 =
λ6 reduces to

0 ≤ (m2
H − m2

A)(tan2 β + cot2 β) + 2m2
h

≤ 32πv2

3
. (47)

Clearly, for tan β away from unity, H and A are
nearly degenerate.

(ii) There is a similar correlation between mH and
mH+ , but unlike the previous point, without any
dependence on tanβ. This can again be seen from
the inequalities of eqs (45a) and (45b) keeping in
mind that now m2

A = (1/2)λ5v
2.

(iii) The unitarity conditions essentially apply on the
difference of the nonstandard squared masses.
Any individual mass can be arbitrarily large with-
out affecting the unitarity conditions. This con-
clusion crucially depends on the existence of a
U (1) symmetry and its soft breaking term in the
potential. When the symmetry of the potential is
only a discrete Z2, considerations of unitarity do
restrict the individual nonstandard masses as has
already been shown.

(iv) The splitting between the heavy scalar masses is
also constrained by the oblique electroweak T -
parameter, whose expression in the decoupling
limit is given by [50,51]

T = 1

16π sin2 θwM2
W

[F(m2
H+, m2

H)

+ F(m2
H+, m2

A) − F(m2
H , m2

A)] , (48)

Figure 6. 2HDM potential with softly broken U(1) symmetry: regions allowed in mH –mA, mH –mH+ and mA–mH+ planes
from unitarity and stability (red points), and from T -parameter (black points), for three choices of tan β. The plots have
been taken from [48], where mH+ > 100 GeV was assumed to respect LEP direct search bound [49].
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with

F(x, y) = x + y

2
− xy

x − y
ln(x/y). (49)

The new physics part in the T -parameter is given
by[52]

T = 0.05 ± 0.12. (50)

To provide intuition into the constraints from the
T -parameter, we assume mH = mA, which is
anyway dictated by the unitarity constraints for
tan β somewhat away from unity. It then follows
from eq. (48) that the splitting between mH+ and
mH is approximately 50 GeV, for |mH+ −mH | �
mH+, mH . It follows from figure 6 that the con-
straints from the T -parameter are stronger than
those from unitarity and stability.

On the other hand, for tan β = 1, unitarity and
stability do not compel mH and mA to be very
close. Then, the T -parameter cannot give any defin-
itive constraints in the planes of the nonstandard
scalar masses, unlike the unitarity and stability
constraints. For this reason, we have shown only
the unitarity/stability constraints in figure 6 for
tan β = 1.

(v) For moderate or large tan β, the unitarity and sta-
bility constraints together with the T -parameter
constraints imply that all three heavy scalar states
are nearly degenerate in the alignment limit.

For completeness, we also comment on the high-scale
validity of 2HDMs [53]. After the Higgs discovery, it is
well known that the SM perhaps needs to be augmented
by new physics at energies beyond 108–1010 GeV
[54,55]. The reason behind this is the following: the
Higgs boson mass ∼125 GeV turns out to be a little
‘smaller’ than what could have made the SM ultra-
violet safe up to Planck scale. More precisely, in the
tussle between the top-Yukawa interaction (which tries
to pull down the scalar quartic coupling) and the quar-
tic self-interaction (which tries to push itself up) during
the course of RG evolution, the top-Yukawa takes an
upper hand and pulls the SM quartic coupling to neg-
ative values well below the Planck scale. One might
expect the situation to improve in a 2HDM because
of the presence of additional quartic couplings. But
the 2HDM potential of eqs (2) and (3), without the
soft-breaking term, still fails to maintain stability all
the way up to the Planck scale [56–58]. Even in the
presence of a soft-breaking parameter, in the alignment
limit, a lower bound on tan β (�3) [57,58] is obtained
from the requirement that the effect of the top-Yukawa

(= √
2mt/(v sin β) in 2HDM vis-à-vis

√
2mt/v in

SM) is sufficiently diluted to maintain the required
stability. Moreover, certain correlations between the
nonstandard masses and the soft-breaking parameter
need to be maintained.

6. Conclusions and outlook

Based on data on the new scalar resonance observed at
the LHC, two important conclusions have been drawn:
(i) its mass is approximately 125 GeV and (ii) its cou-
plings to gauge bosons and fermions are similar to the
SM Higgs boson. In the 2HDM framework, the lat-
ter observation pushes us to the alignment limit. Put
these two conditions together, the 2HDM parameter
space is more constrained than ever. Some important
observations in this context are the following:

(a) When the potential has a global U (1) symmetry,
rather than a discrete Z2, as well as a soft-breaking
term, unitarity restricts the mass-squared differ-
ences of the nonstandard scalars. So the individ-
ual nonstandard masses, like mH, mA or mH+ ,
can grow very large without necessarily violating
unitarity.

(b) Strictly when both doublets receive VEVs and the
potential has an exact discrete or a global con-
tinuous symmetry, the model exhibits features of
nondecoupling. For example, observables do not
necessarily reduce to their SM values even when
nonstandard scalars are too heavy. In [59], we have
demonstrated this behaviour in the context of
h → γ γ , where in the limit of an exact discrete
symmetry, the Higgs signal strength in the dipho-
ton channel at the LHC, given by μγγ , was shown
to retain nonstandard effects even when the charged
Higgs mass is pushed to extremely large values.
Employing the soft-breaking term, it is possible to
ensure decoupling. If the symmetry to start with is
a discrete Z2, one cannot avoid fine-tuning between
the charged Higgs mass and the soft-breaking pa-
rameter to reach the decoupling limit. On the other
hand, if the starting symmetry is a global U(1),
the soft-breaking parameter gets related to the
pseudoscalar mass. In this case, the combined
constraints from unitarity and the T -parameter
naturally lead to the decoupling limit without
any need for fine-tuning. For details, we refer the
readers to ref. [59].
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