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Abstract. Smooth and non-smooth optical solitons in the nonlinearly dispersive Schrödinger equation are given
by phase portraits. The Melnikov technique is used to detect conditions for chaotic motion of this deterministic
system and to analyse conditions for the suppression of chaos. Our results show that the system is in a state of
Melnikov chaos by external disturbances. After the implementation of the controlled system, the optical solitons
can transmit in a stable station for a long time. Numerical simulation also shows that maximum interference
frequency of the system enables the dynamic behaviour to be more complex. The effect of controller parameter on
phase portraits as well as on the numerical simulations of bifurcation diagram and maximum Lyapunov exponents
are also investigated.
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1. Introduction

We offer an attractive topic and a useful theoreti-
cal study to analyse the self-focussing electromagnetic
beams in nonlinear optical media. The perturbative
nonlinearly dispersive Schrödinger equation solitons
have shown great promises in long-distance high-speed
optical fibre communication systems because of their
superb characteristics which cannot be achieved in
conventional soliton-based systems. In a dispersion-
managed system, fibre dispersion has two stages: ano-
malous and normal [1–4].

As is well known, the signal propagation cannot exist
in pure environment. It is always influenced by external
environmental perturbations. Chaos may be unavoid-
able with external perturbations which can be observed
in many practical applications such as in engineering,
biology, industry and production. Besides, many other
systems with external periodic perturbations have been
widely investigated using analytic methods and numer-
ical simulations [5–8].

However, researches on external perturbation for spe-
cial optical soliton models are very rare. In particular,
solitons in optical fibre models are rarely researched.
In fact, the propagation of special optical solitons will
be affected by lots of external periodic perturbation
during real propagation. Hence, the research on special
optical solitons is very valuable and significant.

It is well known that the nonlinear Schrödinger-type
equations have been extensively studied in the field of
theoretical physics (see [9–12] and references therein).
We shall consider the following disturbed nonlin-
early dispersive Schrödinger equation (NLS (m, n)
equation):

iut +(u |u|n−1)xx+μu |u|m−1 = deiσ t cos(wx), (1.1)

where m is an integer, n is a positive integer, d is the
amplitude, w is the frequency, μ = ±1 and i2 = −1.
Equation (1.1) has important applications in vari-
ous fields such as semiconductor materials, optical
fibre communications, plasma physics, fluid and solid
mechanics etc. [5,13–16].
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Figure 1. The bifurcations of phase portraits of (2.6)
(σ > 0) and (b) the corresponding phase-space portraits.

Because of its complex nonlinear terms, we found
that in the undisturbed nonlinearly dispersive Schrö-
dinger equation, there are two kinds of solitary wave
solutions [9]: one is the smooth solitary wave and the
other is the compacton (compactly supported solitons
with non-smooth fronts) (see figures 1a and 2a). This
optical solitary wave propagation in optical fibre main-
tains the shape of the wave for a long time, while am-
plitude and velocity show the character of light pulse.
The use of optical solitons can achieve ultralong dis-
tance, long-capacity optical communications.

We shall study the chaotic behaviour and control of
optical solitary waves under external periodic pertur-
bations. We are interested in the following two points:

(i) Whether non-differentiable special optical soli-
tary waves are more prone to chaos? Can the
system maintains steady state in the external
periodic interference? How to design a controller
to suppress chaos owing to the complex nonlin-
ear item of the system? Compared to the Duffing
system [6–8], it is easy to see that there is no
damping in our system. Once perturbed with
external forcing, the system may easily move to

the chaotic state. Therefore, we shall select the
controller which has the same function with the
damping. So, we shall add controller kux to the
system,

iut + (u |u|n−1)xx + μu |u|m−1

= deiσ t cos(wx) − kux, (1.2)

where k is the strength of the controller.
(ii) We give numerical simulations including singu-

lar homoclinic bifurcation surfaces, bifurcation
diagrams, maximum Lyapunov exponents, etc.
which not only support the theoretical analysis
but also exhibit more new complex dynamical
behaviours. We also analyse threshold value in
the parameter regions for solitons in optical
fibres stable propagation of the controlled sys-
tem. The research is very important. By analy-
sing the parameters’ sensitivity of the controlled
system, we get a group of reasonable parame-
ters and guarantee the propagation of solitons
in optical fibres smoothly. For example, in the
transmission medium of fibre optic communi-
cation systems, the parameters of the solitons
in optical fibres directly affect the nature of the
transmission system. The influence on the opti-
cal fibre communication system will cause signal
attenuation and dispersion. By studying the pa-
rameters’ sensitivity to be controlled, we can
obtain the preferable media to reduce the influ-
ence of perturbation of solitons in optical fibre
propagation.

This paper is organized as follows. In §2, we give
the smooth and compacton solitons of the perturbation
system by phase diagram analysis. In §3, we discuss
the chaotic behaviour of the perturbed system and the
conditions for the existence of chaos under perturba-
tion using Melnikov’s method. In §4 and in §5, we
give numerical simulations to support the theoretical
results obtained in the previous sections and the control
of chaos, respectively. We give numerical simulations.
The paper ends in §6 with Conclusion.

2. Special optical solitons of NLS+(m, n) equation

When μ = 1, eq. (1.1) is referred to as the focussing
(+) branch and is termed as the disturbed NLS+(m, n)
equation

iut + (u |u|n−1)xx + u |u|m−1 = deiσ t cos(wx). (2.1)
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Figure 2. The bifurcations of phase portraits of (2.10)
(σ > 0) and (b) the corresponding phase-space portraits.

Taking u(x, t) = U(x)eiσ t , eq. (2.1) becomes the
ordinary differential equation

−σU+n(n−1)Un−2U ′2+nUn−1U ′′+Um = d cos(wx).

(2.2)
When d = 0, eq. (2.2) is considered as an unperturbed
system

dU

dx
= V,

dV

dx
= 1

nUn−2
(σ −Um−1)−(n−1)

1

U
V 2.

(2.3)

The system (2.3) is a Hamiltonian system with the
Hamiltonian function

H(U, V ) = U2(n−1)V 2

−1

n

(
2σ

n + 1
Un+1 − 2

m + n
Um+n

)
. (2.4)

Next, we shall determine these two optical solitons by
phase diagram analysis.

Case I. Smooth soliton. When n = 1, m = 3, eq. (2.3)
is equivalent to the following system:

dU

dx
= V,

dV

dx
= σU − U3, (2.5)

which is a Hamiltonian system with the Hamiltonian
function

H1(U, V ) = V 2 −
(

σU2 − 1

2
U4

)
. (2.6)

We consider the case of σ > 0. There are three fixed
points: S(0,0) being saddles, C1(

√
σ , 0) and C2(−√

σ ,
0) being centres.

h10 =H1(0, 0)=0 and h11 =H1(
√

σ , 0)=−1

2
σ 2.

(2.7)

When h = h10 = 0, the curves defined by H1(U, V) =
h correspond to a homoclinic orbit of (2.5) (see figure
1b). We have the following parametric representation
of the solitary pattern of (2.1) (see figure 1a):

u(x, t) = ±(
√

2σ sech(
√

σx))eiσ t . (2.8)

Case II. Non-smooth soliton. When n = 2, m = 2, eq.
(2.9) is equivalent to the following system:

dU

dx
= V,

dV

dx
= 1

2
(σ − U) − V 2

U
. (2.9)

This is a Hamiltonian system with the Hamiltonian
function

H2(U, V ) = U2V 2 −
(

σ

3
U3 − 1

4
U4

)
. (2.10)

First, we consider the case of σ > 0. There are three
equilibrium points of (2.9): S(0, 0) being saddles and
the singular point to get a singular homoclinic orbits,
C1(σ , 0) being centres, h20 = H2(0, 0) = 0 and h12 =
H2(σ, 0) = − 1

12σ 4.
When h = h20 = 0, the curves defined by H2(U, V)

= h correspond to a closed orbit which is tangent with
the straight line x = 0 (see figure 2b). We have the
following parametric representation of the compacton
solution of (2.1) (see figure 2a):

u(x, t) =
⎧⎨
⎩

4σ

3
cos2

(x

4

)
eiσ t , |x| ≤ 2π

0, otherwise
. (2.13)

3. Melnikov theoretical analysis

In this section, we discuss the chaotic behaviours and
control of eq. (2.1) [17–20]. Melnikov theory has
proved to be a simple, elegant and successful alterna-
tive for characterizing the complex dynamics of multi-
stable oscillators. In this section, we develop a global
analysis technique, known as Melnikov’s method, to
solve optical soliton chaos.
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The unperturbed system for systems (2.5) and
(2.10) has homoclinic orbits and a compacton solu-
tion. Under certain conditions, transverse intersection
occurs between the perturbed and unperturbed orbits in
the system. It is well known that such bifurcation leads
to horseshoes chaos and thus the fractal structure of the
basin of attraction. In order to determine the condition
for the occurrence of transverse intersection of the sta-
ble and unstable manifolds, the so-called horseshoes
chaos, the Melnikov method is used. The main idea
of this method is to find a function that can measure
the distance between the stable and unstable manifolds
for a saddle or two saddles of the perturbed system.
That is, if the function associated with the Melnikov
method, the so-called Melnikov function, vanishes for
a certain bifurcation parameter value, then the stable
and unstable manifolds will intersect each other away
from the saddle point in the Poincaré section. If the sta-
ble and unstable manifolds cross each other once, they
will intersect an infinite number of times, thus forming
a type of Smale horseshoes mapping leading to chaos.
By the Smale–Birkhoff theorem [17,21], the existence
of such orbits results in chaotic dynamics. As is well
known, this prediction of the appearance of chaos is
both limited and approximated (valid for orbits starting
at points sufficiently near the separatrix). Although the
horseshoes chaos does not manifest itself in the form of
permanent chaos, it does in terms of the fractal basin
boundaries. We therefore apply Melnikov method to
systems (2.5) and (2.9) for finding the criteria of the
existence of homoclinic bifurcation and chaos.

Case I. Taking u(x, t) = U(x)eiσ t , when n = 1, m = 3,
eq. (1.2) becomes the ordinary differential equation

−σU + U ′′ + U3 = d cos(wx) − kU ′. (3.1)

Under such a potential, the system has two stable equi-
librium points S(0, 0) and C1,2(±√

σ , 0) which can
also called the centres and an unstable equilibrium
point S = 0 which is also called the saddle. The homo-
clinic trajectory can be found by setting H(U, V) = 0.
Solving for the resulting displacement and differentiat-
ing to determine velocity, the homoclinic trajectory is
given as follows:

(U10, V10) = (±(
√

2σ sech(
√

σx))

∓√
2σ sech(x

√
σ) tanh(x

√
σ)). (3.2)

The Melnikov method derives a function to describe
the first-order distance between perturbed stable and
unperturbed manifolds. Suppose that the unperturbed
homoclinic or heteroclinic orbits are written as (U10,

V10) = (U±(x), V ±(x)), then the Melnikov function for
system (3.1) can be given as

M±(x0)=
∫ ∞

−∞
V ±(x)[−εV ±(x)+d cos w(x+x0)] dx,

(3.3)
where x0 is the cross-section time of the Poincaré map
and x0 can be interpreted as the initial time of the
forcing term.

We note that V ±(x) is a function of time from +∞
to −∞. We therefore choose the initial conditions
x = 0, U0 = ±√

2σ , V = 0, and V ±(x) would be an
odd function of time for the homoclinic orbit. The
Melnikov function can be simplified as

M±(x0) = −k

∫ +∞

−∞
[∓√

2σ sech(x
√

σ)

×tanh(x
√

σ)]2dx

−
∫ ∞

−∞
(∓√

2σ sech(x
√

σ) tanh(x
√

σ))

×[d cos w(x + x0)] dx

= −kB±
1 − dA±

1 sin wx0, (3.4)

where

B±
1 =

∫ +∞

−∞
[∓√

2σ sech(x
√

σ) tanh(x
√

σ)]2
dx.

Case II. Taking u(x, t) = U(x)eiσ t , when n = 2, m = 2,
eq. (1.2) becomes the ordinary differential equation

−σU +2U ′2 +2UU ′′ +U2 = d cos(wx)−kU ′. (3.5)

Under such a potential, the system has two stable
equilibrium points S(0, 0) and C(σ , 0), which are also
called the centres and an unstable equilibrium point
S = 0 which is also called the saddle. Suppose that the
unperturbed homoclinic or heteroclinic orbits are writ-
ten as (U20, V20) = (U±(x), V ±(x)), then the Melnikov
function for system (3.5) can be given as

(U20,V20)=
(

4σ

3
cos2

(x

4

)
, −σ

3
sin

(x

2

))
, |x| ≤ 2π.

(3.6)

The Melnikov function for system (3.5) can be given
as

M(x0)=
∫ ∞

−∞
V ±(x)[−εV ±(x) + d cos w(x + x0)] dx,

(3.7)

which can be simplified as

M(x0) = −k

∫ +∞

−∞

[
−σ

3
sin

(x

2

)]2
dx

−d

∫ ∞

−∞

(
−σ

3
sin

(x

2

))
sin wxdx sin wx0

= −kB2 − dA2 sin wx0, (3.8)
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where

B2 =
∫ +∞

−∞

[
−σ

3
sin

(x

2

)]2
dx.

Using the previous results and Melnikov’s theorem
[22–27], the following can be stated: if M±(x0) = 0
and M ′±(x0) 	= 0 for some x0 and some set of param-
eters, then horseshoes exist, and chaos occurs [17]. If
M(x0) = 0, the corresponding critical parameter value
is(

k

d

)
0

=
∣∣∣∣∣
A±

i

B±
i

∣∣∣∣∣ , i = 1, 2. (3.9)

Then in the system with fractional-order displacement
(2.5) and (2.9), deterministic chaos may appear for
certain parameter values which satisfy the relation

k

d
<

(
k

d

)
0
. (3.10)

Remark 1. (i) When k = 0, the system is considered
as an unperturbed system. Therefore, Melnikov tech-
nique is used to detect the necessary conditions for
chaotic motion of this deterministic system; for a fixed
frequency ω, the system always produces Smale com-
mutation of chaos. (ii) When k 	= 0, the system is
considered as a control system. If k satisfies eq. (3.10),
the system gets good control. We shall compute eq.
(3.10) numerically in §4.

4. Numerical simulations

In this section, we give numerical simulations to sup-
port the theoretical results obtained in the previous
sections and to find other new dynamics.

It is interesting to analyse the parameter regions for
the stable propagation of the optical fibre signals in
controlled system. The controlled fibre-optic transmis-
sion system has several parameters. Each of them plays
different and virtual roles in the system. We shall anal-
yse the influence on optic-fibre signal propagation of
controlled system (3.7) when the parameter of system
changes with the fixed controller.

According to the result of §3, we give numerical simu-
lations to support the theoretical results as follows:

Case I. For the solitary pattern of system (2.5)

(i) In order to study the ability of the control system
parameters of σ , consider k/d is less than the k-
coordinate of the corresponding point on the sur-
face (see figure 3). The system may be in chaotic

Figure 3. Chaotic threshold in (σ, w, k) space in system (2.5).

state. We observe that the amplitude of the interfe-
rence term has a fixed condition, within the change
of ω, the system (2.5) signals that have large
vibration, with ω and σ , while the system shows
the states of chaos and by controlling the co-
efficients ω and σ , the system will become stable.

(ii) For a detailed study of the interference term
which controls the amplitude and frequency, we
consider the chaotic threshold in (d, w, k) space
given in figure 4 and when the value of k/d is
below the surface, the system may become chao-
tic. When ω = 2, and d changes, the system will
also enhance the control intensity with ω and d,
while increasing the chaotic state of the system
has been reduced and volatility decreased.

Case II. For the compacton solution of system (2.10)

(i) In order to study the ability of the control sys-
tem parameters of σ , consider k/d is less than
the k-coordinate of the corresponding point on
the surface (see figure 5) and the system may be
in chaotic state. One can observe, that when ω

Figure 4. Chaotic threshold in the (d, w, k) space in system
(2.5).
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Figure 5. Chaotic threshold in the (σ, w, k) space in sys-
tem (2.10).

is small, the system has a great deal of vibra-
tion and as ω increases, the vibration reduces,
when σ and ω are increasing, chaotic state of the
system will be controlled.

(ii) For a detailed study of the interference term
which controls the amplitude and frequency,
we consider the chaotic threshold in (d, w, k)
space given in figure 6. When the value of k/d
is below the surface, the system may be chaotic.
We can observe that when ω is small, the system
has massive vibration. When ω increases, the
vibration will be reduced while the chaos will be
controlled.

5. Bifurcation analysis

In this section, we give numerical simulations to sup-
port the theoretical results of the control of chaos.

First, numerical simulations are performed for the
periodic perturbation of system (2.2). When n = 1,
m = 3, eq. (2.2) is considered as a perturbed system
and can be written as

−σU + U ′′ + U3 = d cos(wx). (5.1)

Figure 6. Chaotic threshold in the (d, w, k) space in sys-
tem (2.10).

Equation (5.1) is equivalent to the following system:

dU

dx
= V,

dV

dx
= σU − U3 + d cos(wx). (5.2)

Next, we shall discuss the behaviours of the fibre-optic
signal transmission under perturbation. The system
(5.2) is integrated using the Runge–Kutta technique of
order four to conduct numerical simulation. We select
parameters for σ = 1 and w = 0.05 with the initial
conditions U = −0.001, V = 0.001. The results are
given by bifurcation diagram and maximum Lyapunov
exponents.

Remark 2. According to the bifurcation diagram and
Lyapunov exponents (see figure 7) we can observe
that the value of Lyapunov exponents is positive, and
so the system easily converts to chaos even if there
is a small perturbation. Bifurcation diagram and Lya-
punov exponents show with Melnikov theory analysis
that chaos of optical fibre system (2.6) is the same.

(a) 

(b)

x

d

d

Figure 7. (a) Bifurcation diagram of system (5) in (d, x)
plane (0 ≤ d ≤ 30) and (b) maximum Lyapunov exponents
corresponding to (a).
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(b) 

(c) 

x

k

k

k

Figure 8. (a) Bifurcation diagram of system (5) in (k, x)
plane (0 ≤ k ≤ 30), (b) maximum Lyapunov exponents
corresponding to (a) and (c) enlarged view of (b).

It indicates that the optical fibre transmission is very
vulnerable which causes chaos. So an appropriate
controller is needed for practical applications of fibre-
optic propagation.

Now, let us consider the added controller equations

−σU + U ′′ + U3 = d cos(wx) − kU ′. (5.3)

Equation (5.3) is equivalent to the following system:
dU

dx
= V,

dV

dx
= σU −U3 +d cos(wx)−kV . (5.4)

We choose d = 1. The results are given by bifurcation
diagram and maximum Lyapunov exponents.

According to the bifurcation diagram and Lyapunov
exponents (see figure 8), we can see that the behaviour
of (5.3) is still chaotic within k ∈ (0, 0.089) as the con-
troller is too weak to prevent chaos. Chaos of system
(5.2) can be suppressed with larger k. Moreover, we
cannot ignore the phenomenon that some limit cycles
are symmetric about the origin when k < 22, while it
is not symmetric when k > 22. It is easy to see that the
signal cannot propagate normally and might leak from
the media, which is called escape.

Remark 3. According to the above analysis, by
increasing the controller’s coefficient k the system
becomes stable, but escape occurs when k crosses a
certain value.

6. Conclusions

We conclude that chaos occurs easily under a cosine
function perturbation. This phenomenon will cause a
distortion in information transmission. One can add a
controller to suppress the chaos. The same function
with the damping was considered from Duffing sys-
tem and the Melnikov theorem was applied with an
active control strategy to suppress chaos in the system.
The complex fibre-optic transmission system of the
perturbed NLSE was controlled. We also discussed
the sensitivity to be controlled and found the prac-
tical parameters regions. Thus, we can have similar
conclusion from NLSE.
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