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Abstract. Some important properties of photorefractive spatial solitons and their applications

have been reviewed in the present paper. Using band transport model, the governing principle

of photorefractive nonlinearity has been addressed and nonlinear dynamical equations of spatial

solitons owing to this nonlinearity have been discussed. Mechanisms of formation of screening

and photovoltaic solitons of three different configurations, i.e., bright, dark and grey varieties have

been examined. Incoherently coupled vector solitons due to single and two-photon photorefractive

phenomena have been highlighted. Modulation instability of a broad quasicontinuous optical beam

has also been discussed. Finally possible applications have been highlighted.
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1. Introduction

Nonlinear optics has led the way of several fundamental discoveries; elegant and fascinat-

ing among these is optical soliton. These solitons are extensively studied since last three

decades not only because of their mathematical elegance but also due to their applica-

tions in photonics and optical communications [1–24]. Optical beams and pulses spread

during propagation due to self-diffraction or dispersion. This broadening can be arrested

in optical nonlinear media resulting in stable optical beams or pulses whose spreading

is exactly balanced by optical nonlinearity and these self-trapped beams or pulses are

known as optical solitons [2,3,5,7]. Optical spatial solitons are self-trapped optical beams

whose spreading due to diffraction is exactly balanced by optical nonlinearity-induced

self-lensing mechanisms. The optical beam induces a change in refractive index in the

medium thereby creating an optical waveguide which subsequently guides the beam.
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Thus, the beam first creates a waveguide and then is self-trapped and guided in the wave-

guide created by itself. On the other hand, an optical temporal soliton is a non-spreading

optical pulse whose broadening due to group velocity dispersion is exactly balanced by

the nonlinearity-induced self-phase modulation. More explicitly, the group velocity dis-

persion produces a chirp in the propagating pulse which is balanced by the opposite chirp

created by nonlinearity. Exact balance of these opposite chirps results in the formation of

optical temporal solitons.

1.1 Optical solitons or optical solitary waves

Way back in 1995, Zabusky and Kruskal [13] introduced the term solitons to reflect the

particle-like properties of stable self-trapped waves in nonlinear media. The motivation

behind this was the fact that the shape of these self-trapped wavepackets remain intact

even after collision. Historically, this term was reserved for those wavepackets which

obey integrable partial differential equations that can be solved by inverse scattering the-

ory [10,11,13]. Solitons, which are solutions of these equations, remain invariant even

after collision as they undergo elastic collision. Optical beam and pulse propagation in

Kerr nonlinear media are governed by partial differential equations which are integrable

via inverse scattering technique. Hence, optical solitons can be created in such media.

However, most physical optical systems, for example, photorefractive media, possess non-

Kerr types of nonlinearity in which optical beams or pulses are described by dynamical

equations that are partial differential equations, but are not integrable by inverse scat-

tering technique. Self-trapped solutions of these non-integrable equations are known as

‘solitary waves’. These solitary waves are not solitons because collision between these

solitary waves is not always elastic [8,9,14]. For example, under specific conditions, two

photorefractive optical spatial solitary waves may coalesce to form a single solitary wave

and a single solitary wave may undergo fission to give birth to new solitons. However,

in many cases, these solitary waves play extremely important roles in several applica-

tions. In literature, despite their shortcomings, it is now quite common to loosely refer all

self-trapped optical solitary waves as solitons regardless of whether they obey integrable

partial differential equation or not.

1.2 Emergence of photorefractive optical spatial solitons

Guiding of optical beams in the self-created waveguide was first pointed out by Askaryan

in 1962 [12]. Kelly [15] pointed out that in Kerr nonlinear media spatial solitons with two

transverse dimensions (2D) are unstable and undergo catastrophic collapse. Soon it was

realized that spatial solitons with only one transverse dimension (1D) are stable in Kerr

nonlinear media [15]. Subsequently, it was also realized that catastrophic collapse of 2D

solitons could be avoided in an optical medium possessing saturating nonlinearity [16].

Therefore, the idea of saturating nonlinearity was the key to the discovery of a plethora

of optical spatial solitons. In spite of the prediction of formation of stable 2D solitons

in saturating nonlinear media, no progress was made in creating these solitons due to

lack of identification of appropriate optical materials that possess saturating nonlinear-

ity. The breakthrough was made by Segev et al [17,18] in 1990 with the identification of
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non-Kerr type of nonlinearity in photorefractive media and observation of optical spatial

solitons due to such nonlinearities. Unlike Kerr solitons, the dynamics of photorefractive

solitons, under a variety of photorefractive nonlinear effects, is governed by modified non-

linear Schrödinger equations. Photorefractive nonlinearity is non-instantaneous, typically

non-local and inherently saturable and spatial solitons in these media can be created at

microwatt power level using a very simple set-up in the laboratory, while their formation

time ranges from microseconds to minutes.

Photorefractive optical spatial solitons possess several unique properties. For exam-

ple, unlike Kerr solitons which undergo elastic collision, collisions of these solitons are

inelastic, more diverse and interesting. The inelastic collision between two photorefrac-

tive spatial solitons may lead to soliton fusion or fission, with particle-like annihilation or

birth of new solitons. Another unique feature is that one can create an induced waveguide

using a weak soliton beam which subsequently can be used to guide another powerful

beam at a different wavelength at which the material is less photosensitive [24,25]. It

has been demonstrated that photorefractive spatial soliton-induced waveguides can be

used for device applications such as directional couplers and high-efficiency frequency

converters [26,27]. The unique features of photorefractive nonlinearity have opened up

immense possibilities for new and novel devices, such as all-optical switching and rout-

ing, steering, interconnects, parallel computing, optical storage, etc. [28–31]. They are

also promising in experimental verification of theoretical models, because they can be

created at very low power. In this paper, we confine our discussion on the properties of

photorefractive optical spatial solitons. This review gives only a partial description of the

development of photorefractive optical spatial solitons, and interested readers are referred

to several excellent recent reviews [14,32–35].

2. Photorefractive materials

Exposure of a photorefractive (PR) material with optical field of non-uniform intensity

leads to the excitation of charge carriers of inhomogeneous density. These charge car-

riers then migrate due to drift or diffusion or both and create space-charge field which

subsequently modifies the refractive index of the material via either linear electro-optic or

quadratic electro-optic effect [30,31,35]. Change in refractive index of certain electro-

optic materials due to optically-induced redistribution of charge carriers is known as

photorefractive (PR) effect. Photorefractive effect has potential applications in holo-

graphy [34], optical phase conjugation [30,31,36], optical signal processing and optical

storage [31,34,35]. Generally, PR materials are classified in three different categories.

Most commonly used PR materials are inorganic ferroelectrics, such as LiNbO3, KNbO3,

BaTiO3, etc. Recently, many experiments on spatial solitons have been performed [37] in

centrosymmetric paraelectric potassium lithium tantalate niobate (KLTN). Some selected

semiconductors such as InP, GaAs, CdTe, etc., also show PR property with large carrier

mobility that produces fast dielectric response time, which is important for fast image

processing. They have potential use in fast holographic processing of optical information.

The third category of PR materials are polymers which show strong PR effect [34,35]

at high applied voltage. PR pattern can be erased easily in polymers by decreasing the

applied voltage.
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3. Photorefractive optical nonlinearity

The band transport model of Kukhtarev–Vinetskii [38] has been widely used to describe

the theoretical foundation of PR nonlinearity. In view of this model, we assume a PR

medium with a completely full valance band and an empty conduction band which is

illuminated by an optical field of non-uniforn intensity. It has both donor and acceptor

centres, uniformly distributed, whose energy states lie somewhere in the middle of the

band gap. The donor electron states are at higher energy than that of the acceptor energy

states. The non-uniform optical field excites unionized donors and creates charge carriers.

These charge carriers move to the conduction band where they are free to move, to dif-

fuse or to drift under the combined influence of self-generated and external electric field

and are finally trapped by the acceptors. During this process, some of the electrons are

captured by ionized donors and thus are neutralized, and finally a steady state is reached

with the creation of internal space-charge field, that can be evaluated using donor ioniza-

tion rate equation, electron continuity equation, current density (J ) equation, Poisson’s

equation and the charge density (ρ) equation [14,21,39,40] as follows:

∂N+
D

∂t
= (siI + βT )(ND − N+

D ) − γRNN+
D , (1)

∂N

∂t
− ∂N+

D

∂t
= 1

e
�∇ · �J , (2)

�J = eNμ �E + kBT μ �∇N + kpsi

(

ND − N+
D

)

I �c, (3)

�∇ · ǫ �E = ρ, (4)

ρ (�r) = e
(

N+
D − NA − N

)

, (5)

where N , ND, NA and N+
D are densities of electron, donor, acceptor and ionized donor,

respectively; si is the photoexcitation cross-section, I is the intensity of light in terms of

Poynting flux, βT and γR are rate of thermal generation and electron trap recombination

coefficient, respectively. T , e and μ are respectively the temperature, charge and mobility

of the electron; kB is the Boltzmann constant, kp is the photovoltaic constant and �c is the

unit vector in the direction of the c-axis of the PR crystal. The current density arises due to

the drift, diffusion and photovoltaic effect; E is the sum of externally applied field and the

generated space-charge field Esc. Most experimental investigations on PR solitons have

been performed using one-dimensional waves. Therefore, it is appropriate to find material

response in one transverse dimension (say x only). In the steady state, eqs (1)–(4) reduce

to

si(I + Id)(ND − N+
D ) − γRNN+

D = 0, (6)

∂Esc

∂x
= e

ǫ0ǫr

(N+
D − NA − N), (7)

J = eNμEsc + kBT μ
∂N

∂x
+ kpsi

(

ND − N+
D

)

I, (8)

∂J

∂x
= 0, (9)

where Id(=βT /si) is the dark irradiance which is also the homogeneous inten-

sity that controls the conductivity of the crystal. Usually I is such that N ≪ ND, N ≪ NA
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and NA ≪ N+
D . The space-charge field Esc under these approximations turns out to

be

Esc = E0

I∞ + ID

I + ID

+ Ep

I∞ − I

I + ID

− kBT

e

1

I + ID

∂I

∂x
, (10)

where E0 and Ep = kpγRNA/eμ are the external bias field to the crystal and photovoltaic

field, respectively. In the above derivation, we have assumed that the power densities of

the optical field and space-charge field attain asymptotically constant values, i.e., I (x →
±∞, z) = I∞ and Esc(x → ±∞, z) = E0. The change in refractive index �n in a

non-centrosymmetric PR crystal [14,30,33–35], such as BaTiO3, LiNbO3, etc., is due to

the linear electro-optic effect (Pockel’s) and is given by

�n = −1

2
n3reEsc, (11)

= −1

2
n3re

[

E0

I∞ + ID

I + ID

+ Ep

I∞ − I

I + ID

− kBT

e

1

I + ID

∂I

∂x

]

, (12)

where re and n are the effective linear electro-optic coefficient and average refractive index,

respectively. In centrosymmetric PR materials, the index change is due to the quadratic

electro-optic response to a photoinduced internal field and can be expressed [35,41] as

�n = −1

2
n3

bgeǫ
2
0(ǫr − 1)2E2

sc, (13)

△n = −1

2
n3

bgeǫ
2
0(ǫr − 1)2

[

E0

I∞ + ID

I + ID

+ Ep

I∞ − I

I + ID

− kBT

e(I + ID)

∂I

∂x

]2

,

(14)

where ge, ǫr , ǫ0 and nb are the effective quadratic electro-optic coefficient, relative dielec-

tric constant, free space permittivity and refractive index of the crystal, respectively; it is

assumed that the DC polarization is in the linear regime. Depending on the sign of ge,

the nonlinearity is either self-focussing or defocussing. The nonlinear property of the PR

media is evident from eqs (12) and (14) as the refractive index is intensity-dependent. Dif-

ferent terms in the above expressions are responsible for the existence of different types of

solitons. Screening and photovoltaic solitons respectively owe their existence to the first

and second terms in these expressions. When both first and second terms are dominant,

one would expect screening photovoltaic solitons. The third term in each of these equa-

tions arises due to the diffusion process and is not in general responsible for the formation

of solitons. However, it is responsible for the self-deflection of solitons [14,21,41].

4. Spatial optical solitons owing to single-photon PR phenomenon

4.1 Historical development

Way back in 1992, Segev et al [17,18] first detected PR solitons in quasisteady-state

regime. Soon PR screening solitons were predicted and identified [19–21]. Two different

varieties of steady-state screening solitons were subsequently investigated and identified

in different biased non-centrosymmetric media under different experimental configu-

rations [19,20,37–40,42–45]. Subsequently, screening solitons were also predicted and
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observed in centrosymmetric materials, particularly in KLTN crystals [37,41]. Another

family of optical solitons was also observed in unbiased PR crystals which exhibit pho-

tovoltaic effect. These solitons, popularly known as photovoltaic solitons, have been

observed experimentally in 1D as well as in 2D configurations [46–48]. Besides these,

PR solitons which are a combination of the screening and photovoltaic solitons were also

predicted and successfully observed [42,49]. They owe their existence to both photo-

voltaic effect and spatially nonuniform screening of the applied field, and are also known

as screening photovoltaic (SP) solitons. By controlling the magnitude of bias field they

can be converted to screening solitons or photovoltaic solitons.

PR crystals like LiNbO3 possess high second-order susceptibility, and hence can be

used for parametric processes such as second-harmonic generation. Recently, it has

become very popular, primarily due to its ultraslow PR relaxation time owing to which any

written solitonic channels can act as optical waveguides for a long time even after turning

off the soliton beam. These soliton-induced waveguides have been used both in switching

devices [50] and for enhancing the second harmonic conversion efficiency [51]. Though

non-centrosymmetric PR crystals possess large nonlinearity, their typical response time

is in the range of milliseconds. Hence, these materials are not suitable for very fast

reconfigurable waveguide channels and switches. On the other hand, using paraelectric

centrosymmetric PR crystals, particularly KLTN, DelRe et al [52] demonstrated dynamic

switching using electroholography [52–54]. Spatial solitons are created in paraelectrics

that in turn are employed to guide the signal beams of non-photorefractive wavelength.

The soliton-induced waveguide remains stable even at high power levels, and can be mod-

ified via the electro-optic effect by varying the external biasing field, ensuring fast change

of propagation properties of the signal beam. Fast electro-optic response of KLTN makes

them useful in important applications like optical communications and signal processing

and this has paved the way to fast nanosecond applications of PR spatial solitons [52–54].

4.2 Modified nonlinear Schrödinger equation (mNLSE)

Most of the solitary wave experiments in PR media employ optical beams with one trans-

verse dimension. Therefore, we assume the optical beam to be such that no dynamics is

involved in y-direction and it is permitted to diffract only along x-direction. The external

bias field E0 and the optic axis of the crystal are directed along the x-axis. The extraor-

dinary refractive index n̂e in such cases [14,20,42,55] is given by (n̂e)
2 = n2

e − n4
ereEsc,

where ne is the unperturbed extraordinary index of refraction. The electric field of the

soliton forming beam is assumed to be �E = �x�(x, z) exp[i(kz − ωt)], where k = k0ne,

k0 = 2π/λ0 and λ0 is the free-space wavelength of the optical field. Employing

slowly-varying envelope approximation for � in the Maxwell’s equations we obtain

i
∂�

∂z
+ 1

2k

∂2�

∂x2
− 1

2
k0n

3
ereEsc� = 0. (15)

By virtue of the space-charge field evaluated in §3, we obtain the following [14,21,56–60]

modified nonlinear Schrödinger equation (mNLSE):

i
∂A

∂ξ
+ 1

2

∂2A

∂s2
− β(1 + ρ)A

1 + |A|2 − α(ρ − |A|2)A
1 + |A|2 + δA

1 + |A|2
∂|A|2
∂s

= 0, (16)
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where

ξ = z

k0nex
2
0

, s = x

x0

, α = (k0x0)
2(n4

ere/2)Ep,

β = (k0x0)
2(n4

ere/2)E0, ρ = I∞
Id

,

δ = (k2
0x0ren

4
ekBT )/(2e), A =

√

ne

2η0Id

�

and η0 is the intrinsic impedance of free space. The above mNLSE is the governing equa-

tion for varieties of bright, dark and gray solitons. Two parameters α and β play very

important roles in the formation of these solitons, while δ, which is associated with the

diffusion term, is not directly responsible for soliton formation. The diffusion processes

are primarily responsible for bending of trajectories of propagating solitons, hence, large

value of δ influences the trajectory of bending.

5. Screening optical spatial solitons

Screening solitons could be created in biased non-photovoltaic PR crystals (i.e., α = 0).

Hence, if we neglect diffusion then the equation for screening solitons reduces to

i
∂A

∂ξ
+ 1

2

∂2A

∂s2
− β(1 + ρ)

A

1 + |A|2 = 0. (17)

Bright screening solitons: The soliton forming beam for bright solitons vanishes at infin-

ity, therefore I∞ = ρ = 0. We express the stationary bright soliton as A(s, ξ) =
p1/2y(s) exp(iνξ), where ν is the nonlinear shift in propagation constant and y(s) is

a normalized real function. In addition, 0 ≤ y(s) ≤ 1, y(0) = 1, ẏ(0) = 0 and

y(s → ±∞) = 0. The parameter p represents the ratio of the peak intensity (Imax)

to the dark irradiance Id, where Imax = I (s = 0). Substitution of A(s, ξ) into eq. (17)

yields

d2y

ds2
− 2νy − 2β

y

1 + py2
= 0. (18)

Use of boundary condition and integration of the above equation leads to

s = ± 1

(2β)1/2

∫ 1

y

p1/2

[ln(1 + pŷ2) − ŷ2 ln(1 + p)]1/2
dŷ. (19)

The bright profile y(s) can be obtained using numerical procedure and it can be easily

shown that these solitons exist when β > 0, i.e., E0 is positive.

Dark screening solitons: In appropriate media, eq. (17) also admits dark solitary wave

solutions [14,21] which are embedded in a constant intensity background. Therefore,

I∞ is finite, and hence, ρ is also finite. In addition, they exhibit anisotropic field pro-

files with respect to s. We take the following ansatz for stationary solutions: A(s, ξ) =
ρ1/2y(s) exp(iνξ), where ν is the nonlinear shift in propagation constant and y(s) is a
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normalized real odd function of s satisfying y(0) = 0, y(s → ±∞) = ±1, (dy/ds) =
(d2y/ds2) = 0 as s → ±∞. Substituting A in eq. (17) we obtain

d2y

ds2
− 2νy − 2β(1 + ρ)

y

1 + ρy2
= 0. (20)

By virtue of integration and use of boundary condition, we immediately obtain

s = ± 1

(−2β)1/2

∫ 0

y

dŷ

[(ŷ2 − 1) − (1+ρ)

ρ
ln

1+ρŷ2

1+ρ
]1/2

. (21)

Obviously, these solitons exist only when β < 0, i.e., when E0 is negative. Unlike

their bright counterpart, these dark screening photovoltaic solitons do not possess bistable

property.

Gray screening solitons: Besides bright and dark solitons, eq. (17) also admits another

interesting class of solitary waves, which are known as gray solitons [14,21]. In this case

too, wave power density attains a constant value at infinity, i.e., I∞ is finite, and hence, ρ

is finite. To obtain stationary solutions, we assume

A(s, ξ) = ρ1/2y(s) exp

[

i

(

νξ +
∫ s Jdŝ

y2(ŝ)

)]

, (22)

where ν and J are nonlinear shift in propagation constant and a real constant, respectively;

y(s) is a normalized real even function of s with properties y2(0) = m (0 < m < 1),

ẏ(0) = 0, y(s → ±∞) = 1 and all derivatives of y(s) are zero at infinity. The para-

meter m describes grayness, i.e., the intensity I (0) at the beam centre is I (0) = mI∞.

Substitution of the above ansatz for A in eq. (17) yields

d2y

ds2
− 2νy − 2β(1 + ρ)

y

1 + ρy2
− J 2

y3
= 0. (23)

The values of J and ν can be obtained using boundary conditions mentioned earlier.

Inserting these values and after integrating once, we get

(

dy

ds

)2

= 2ν(y2−1)+ 2β

ρ
(1+ρ) ln

(

1 + ρy2

1 + ρ

)

+2(ν+β)

(

1 − y2

y2

)

. (24)

Profiles of dark solitons can be obtained easily by numerical integration of this equation.

Unlike bright or dark solitons, the phase of gray solitons is not constant across s, instead

it varies across s and they can exist only when β < 1 and m < 1.

6. Optical spatial vector solitons

In previous sections, our discussions were confined to optical spatial solitons which are

solutions of a single dynamical equation. These solutions arise due to a single optical

beam with specific polarization. However, there are instances where two or more optical

beams may mutually get trapped and propagate without distortion. These beams could

be of the same or different frequencies or polarization. They are mutually trapped and

depend on each other in such a way that undistorted propagation of one is sustained by
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other and vice versa. In order to describe self and mutually trapped propagation of more

than one soliton-forming optical beams, we need to solve a set of more than one coupled

solitary-waves. Solutions of this set of coupled NLS equations are called vector solitons

if they preserve their shape.

6.1 Incoherently coupled spatial vector solitons

Steady-state incoherently coupled solitons are the most extensively studied vector solitons

in PR media [14,56,57,61–71]. These solitons exist only when the two soliton-forming

beams possess the same polarization and frequency and are mutually incoherent. Four

different varieties of solitons i.e., bright–bright, dark–dark, bright–dark and gray–

gray [56,57,66] have been observed. Since two beams are mutually incoherent, no phase

matching is required and they experience equal effective electro-optic coefficients. The

idea of two incoherently coupled solitons has been generalized and extended to soliton

families where the number of constituent solitons are more than two.

6.2 Coupled mNLSE owing to single-photon phenomenon

We consider a pair of mutually incoherent optical beams of the same frequency and polar-

ization which are propagating in a lossless PR crystal along z-direction. The optical c-axis

of the crystal and polarization of both the beams are oriented along the x-direction. These

beams are allowed to diffract only along the x-direction and y-dynamics has been implic-

itly omitted in the analysis. These beams are expressed as �Ej = �x�j (x, z) exp(ikz),

j = 1, 2 and �j is the slowly-varying envelope of optical field which satisfies the

following equation:

i
∂�j

∂z
+ 1

2k

∂2�j

∂x2
− k0n

3
er33Esc

2
�j = 0. (25)

Neglecting the diffusion effect, the space-charge field can be obtained from eq. (10) as

Esc = E0

I∞ + Id

I + Id

+ EP

I∞ − I

I + Id

, (26)

where I (x, z) = ne/(2η0)(|�1|2 + |�2|2) is the total power density of the two beams,

whose value at a distance far away from the centre of the crystal is I∞ = I (x → ±∞).

Substituting the expression of Esc in eq. (25), we derive the following equation:

i
∂Aj

∂ξ
+ 1

2

∂2Aj

∂s2
− β(1 + ρ)

Aj

(1 + |Aj |2 + |A3−j |2)

− α
(ρ − |Aj |2 − |A3−j |2)Aj

(1 + |Aj |2 + |A3−j |2)
= 0, (27)

where Aj = √
(ne/2η0Id)�j ; α, β, ξ , s and ρ are defined earlier. The above

set of two coupled Schrödinger equations can be examined for bright–bright, bright–

dark, dark–dark, gray–gray screening, photovoltaic as well as screening photovoltaic
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solitons [56,62–71]. In the theoretical front, numerical method to solve the above set of

coupled equations was developed by Christodoulides et al [61]. Though this method has

been used extensively, it fails to identify the existence of large family of solitons. Konar

et al [57] have developed a method which captures those solitons which were missed out

by Christodoulides et al [61]. Now we describe the method to identify bright–dark soli-

tons only. For elaboration, readers are referred to [14,56,57,62–71].

Bright–dark soliton: We express A1 = p1/2f (s) exp(iμξ) and A2 = ρ1/2g(s) exp(iνξ),

where f (s) and g(s) respectively represent envelope of bright and dark beams. Two

positive quantities p and ρ represent the ratios of their maximum power density with

respect to the dark irradiance Id. Therefore, bright–dark soliton pair obeys the following

coupled ordinary differential equations:

d2f

ds2
− 2

[

μ + β(1 + ρ)

1 + pf 2 + ρg2

]

f = 0 (28)

and

d2g

ds2
− 2

[

ν + β(1 + ρ)

1 + pf 2 + ρg2

]

g = 0. (29)

A particular solution of the above equations is obtained by assuming f 2 + g2 = 1. Use

of boundary conditions gives μ = −(β/�) ln(1 + �) and ν = −β, where � = (p − ρ)/

(1 + ρ). When peak intensities of two solitons are approximately equal (� ≪ 1), the

soliton solution [58,61] leads to A1 = p1/2 sech[(β�)1/2s] exp[−iβ(1 − �/2)ξ ] and

A2 = ρ1/2 tanh[(β�)1/2s] exp[−iβξ ], which exist only when β� > 0.

7. Two-photon photorefractive phenomenon

In previous sections, we have discussed properties of optical spatial solitons which owe

their existence to the single-photon PR phenomenon. Recently, Ramadan et al [59] cre-

ated bright spatial solitons in a biased BSO crystal using two-step excitation process.

Electrons were first excited to the conduction band by a background beam, and then

they were excited to higher levels in the conduction band by a second optical beam

of larger wavelength. Using this two-step process in a biased BSO crystal, Ramadan

et al [59] demonstrated the self-confinement of a red beam at 633 nm supported by another

optical beam at 514.5 nm. Recently, Castro-Camus and Magana [60] also presented an

identical model of two-photon PR phenomenon which includes a valance band (VB), a

conduction band (CB) and an intermediate allowed level (IL). A gating beam of photon

energy h̄ω1 is used to maintain a quantity of excited electrons from the valance band

(VB) to an intermediate allowed level (IL) which are subsequently excited to the conduc-

tion band by another signal beam with photon energy h̄ω2. The signal beam can induce a

spatial-dependent charge distribution leading to a nonlinear change of refractive index in

the medium. Based on Castro-Camus and Magana’s model, several authors have inves-

tigated two-photon screening and photovoltaic solitons [10,14,71–73] which owe their

existence to the two-photon PR phenomenon.
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7.1 Optical nonlinearity and evolution equation of solitons

In order to estimate optical nonlinearity owing to two-photon PR phenomenon, we need

to evaluate the space-charge field which can be obtained from the set of rate, current and

Poisson’s equations proposed by Castro-Camus et al [60]. Instead of doing that here we

refer interested readers to refs [14,73] and straightaway use the expression of space-charge

field Esc due to two-photon PR phenomenon [73]. We assume that the soliton-forming

optical beam of intensity I2 is propagating along the z-direction of the crystal which is

permitted to diffract only along the x-direction. The optical beam is polarized along the

x-axis which is also the direction of crystal c-axis and the external bias field. The soliton-

forming beam is taken as �E = �x�(x, z) exp[i(kz − ωt)], where the symbols have been

defined earlier. The crystal is biased with external voltage V and connected with external

resistance R and it is illuminated with a gating beam of constant intensity I1. We assume

that both the power density and space-charge field are uniform at a large distance from

the centre of the soliton-forming beam. Thus, I2(x → ±∞, z) = I2∞ = constant and

Esc(x → ±∞, z) = E0. Neglecting the effect of diffusion, the space-charge field turns

out to be

Esc = gEa

(I2∞ + I2d)(I2 + I2d + γ1NA

s2
)

(I2 + I2d)(I2∞ + I2d + γ1NA

s2
)

+Ep

s2(gI2∞ − I2)(I2 + I2d + γ1NA

s2
)

(I2 + I2d)(s1I1 + β1)
, (30)

where NA and N are acceptor density and electron density in the conduction band, respec-

tively; γR , γ1 and γ2 are the recombination factors of the conduction to valence band

transition, intermediate allowed level to valence band transition and conduction band

to intermediate level transition, respectively; β1 and β2 are respectively, the thermoion-

ization probability constant for transitions from valence band to intermediate level and

intermediate level to conduction band; s1 and s2 are photoexcitation crosses. Ep =
κpNAγR/eμ is the photovoltaic field, I2d = β2/s2 is the dark irradiance, g = 1/(1 + q),

q = (eμN∞SR/d), N∞ = N(x → ±∞). In general, g is bounded between 0 ≤ g ≤ 1.

Under short circuit condition R = 0 and g = 1, implying that the external electric field is

totally applied to the crystal. For open circuit condition R → ∞, and thus, g = 0, i.e.,

no bias field is applied to the crystal. Employing eq. (30) and following the procedure

employed earlier, the nonlinear Schrödinger equation for the normalized envelope can be

obtained as [73,74]

i
∂A

∂ξ
+ 1

2

∂2A

∂s2
− βg

(1 + ρ)(1 + σ + |A|2)A
(1 + |A|2)(1 + σ + ρ)

− αη
(gρ − |A|2)(1 + σ + |A|2)A

1 + |A|2 = 0, (31)

where ρ = I2∞/I2d, A = √
(ne/2η0I2d)�, β = (k0x0)

2(n4
er33/2)Ea, η = β2/(s1I1 +

β1), σ = (γ1NA/s2I2d) = (γ1NA/β2). Equation (31) can be employed to inves-

tigate screening, photovoltaic and screening photovoltaic solitons under appropriate

experimental configuration.
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Bright screening solitons: These solitons, for which α = 0 and ρ = 0, have been studied

by several researchers [14,60,72–75]. In the low-amplitude limit, i.e., when |A|2 ≪ 1,

eq. (31) reduces to

i
∂A

∂ξ
+ 1

2

∂2A

∂s2
− β

1 + σ

(

1 + σ − σ |A|2
)

A = 0. (32)

The one-soliton solution of the above equation is given by

A(s, ξ) = p1/2sech

[

(

βpσ

1 + σ

)1/2

s

]

exp

[

i
β(pσ − 2σ − 2)

2(1 + σ)
ξ

]

. (33)

Dark screening solitons: For this case ρ �= 0, and thus, when |A|2 ≪ 1, eq. (31) reduces to

i
∂A

∂ξ
+ 1

2

∂2A

∂s2
− β(1 + ρ)

(1 + σ + ρ)
(1 + σ − σ |A|2)A = 0. (34)

The dark soliton solution of the above equation turns out to be

A(s, ξ) = ρ1/2 tanh

[

−
(

βρσ

1 + σ + ρ

)1/2

s

]

exp

[

iβ(1 + ρ)(ρσ − σ − 1)ξ

1 + σ + ρ

]

.

(35)

These solitons could be observed in SBN because, they have an intermediate level

required for two-step excitation. In addition to bright and dark solitons, eq. (31) also pre-

dicts steady-state gray solitons which were investigated by Zhang et al [75]. Characteristics

of these solitons are similar to one-photon PR gray spatial solitons. For example, they

require bias field opposite to the optical c-axis and their FWHM is inversely proportional

to the square root of the absolute value of the bias field. Proceeding in a similar way, we

can study bright and dark photovoltaic solitons.

8. Modulation instability (MI)

Modulation instability (MI) is an inherent characteristic of wave propagation in nonlinear

media. It refers to unstable propagation of a continuous or quasicontinuous wave (CW) in

such a way that the wave disintegrates into a large number of localized coherent structures

after propagating some distance through nonlinear physical media. MI occurs as a result

of interplay between nonlinearity and dispersion in temporal domain, and between non-

linearity and diffraction in the spatial domain [2,5,76–85]. A continuous wave (CW) or

quasicontinuous wave radiation propagating in a nonlinear medium may suffer instability

with respect to weak periodic modulation of the steady state and results in the breakup

of CW into a train of ultrashort pulses. In spatial domain, for a narrow beam, self-phase

modulation exactly balances the diffraction and a robust spatial soliton is obtained, while

a broad optical beam disintegrates into many filaments during propagation in the same

self-focussing nonlinear medium.

MI has been extensively studied in a wide range of physical systems like fluids [86],

plasmas [76], Bose–Einstein condensates [77], discrete nonlinear systems [78], negative

index materials [79], soft matter [80], PR media [81,82], optical fibres [83], etc. MI typically
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occurs in the same parameter region where solitons are observed. In fact, the filaments that

emerge from the MI process are actually trains of almost ideal solitons. Therefore, the phe-

nomenon of MI can be considered as a precursor of soliton formation and has been found

in both coherent and incoherent beams. MI has been extensively investigated in PR media

[85,87,88]. Single- as well as two-photon PR media have been considered to analyse

instability characteristics. Moreover, not only non-centrosymmetric but also centrosym-

metric PR media have been examined [85]. Unlike non-centrosymmetric media, in

centrosymmetric media the characteristics of this instability is independent of the external

applied field. In the next section, we examine the MI of a broad optical beam in a biased

two-photon non-centrosymmetric photovoltaic PR medium.

8.1 MI gain under linear stability framework

In order to find out the MI gain, we consider an optical beam with large transverse spatial

dimension. As we are confining our present interest on the stability of a broad bright

beam of finite transverse extension, I2∞ = 0 and hence ρ = 0. Therefore, the evolution

equation of the broad optical field reduces to

i
∂A

∂ξ
+ 1

2

∂2A

∂s2
−βg

(1 + σ + |A|2)
(1 + |A|2)(1 + σ)

A+αη
|A|2(1 + σ + |A|2)

(1 + |A|2) A = 0. (36)

Equation (36) admits a steady-state CW solution A(ξ, s) =
√

P exp[i�(ξ)], where P is

the initial input power at ξ = 0 and �(ξ) is the nonlinear phase shift which increases

with propagation distance ξ according to the equation

�(ξ) = −gβ
(1 + σ + P)

(1 + P)(1 + σ)
ξ + αη

P (1 + σ + P)

1 + P
. (37)

The initial stage of MI can be investigated in the linear stability framework, under which

the stability of the steady-state solution is examined by introducing a perturbation in the

amplitude of the beam envelope so that the perturbed field now becomes

A(ξ, s) =
[√

P + a(ξ, s)
]

exp[i�(ξ)], (38)

where a(ξ, s) is an arbitrarily small complex perturbation field such that a(ξ, s) ≪
√

P .

Substituting the perturbed field in eq. (36) and retaining terms linear only in the perturbed

quantity, the evolution equation for the perturbation field is obtained as

i
∂a

∂ξ
+ 1

2

∂2a

∂s2
+αηP (a+a∗)+ αησP (a + a∗)

(P + 1)2
+ gβσP (a + a∗)

(1 + σ)(1 + P)2
= 0, (39)

where ∗ denotes complex conjugate. The spatial perturbation a(ξ, s) is assumed to be

composed of two side-band plane waves

a(ξ, s) = u cos(Kξ − �s) + iv sin(Kξ − �s), (40)

where u and v are the real amplitudes of the perturbing field, K and � are the wave

number and spatial frequency of the perturbations, respectively. Substitution for the

perturbation field into its evolution equation yields
(

�− −K

K �+

) (

u

v

)

= 0, (41)
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where

�− = −�+ + 2gβσP

(1 + σ)(1 + P)2
+ 2αησP

(1 + P)2
+ 2αηP

and

�+ = �2/2.

Equation (41) possesses a non-trivial solution only when the following dispersion relation

holds good:

K2 = −�2

2

(

2gβσP

(1 + σ)(1 + P)2
+ 2αησP

(1 + P)2
+ 2αηP − �2/2

)

. (42)

If the wave number of the perturbation becomes complex, then the instability will set in

with exponential growth of the perturbation field a(ξ, s) resulting in the filamentation of

the broad beam into a number of filaments. Thus, the propagating broad optical beam will

be unstable. The growth rate g(�)(= 2Im(K)) of the MI is obtained as

g(�) =
√

2�

(

2gβσP

(1 + σ)(1 + P)2
+ 2αησP

(1 + P)2
+ 2αηP − �2/2

)1/2

. (43)

8.2 Gain spectrum of instability

MI gain is achievable in a photovoltaic PR (PVPR) crystal for a given range of frequency

and specified range of values of g, σ, η, α, β and P . Parameters η and σ are always

positive, while α and β can be both positive or negative depending on the media and the

polarity of the external bias field. In an unbiased PVPR media (Ea = 0, i.e., β = 0),

thus K is always positive if α < 0. Hence, usually in such media, modulation instability

−20−1001020
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Figure 1. MI gain spectrum g(�) as a function of perturbation frequency �.
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cannot set in. However, in such media with the application of external field of appropriate

magnitude and polarity MI can set in and grow as long as

2gβσP

(1 + σ)(1 + P)2
> 2|α|ηP

(

1 + σ

(1 + P)2

)

+ �2

2
. (44)

Therefore,with the application of external electric field, it is possible to initiate modulation

instability and control the growth of instability in those media where MI was hitherto

prohibited. On the other hand, if for a given value of beam power MI growth rate is finite

in an unbiased PVPR medium with positive value of α, then the instability growth rate

can be enhanced or decreased with the application of external electric field of appropriate

0 2 4 6 8 10
0
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m
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β=−83.79 

Figure 2. Variation of �m with P for three values of β.
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Figure 3. Variation of maximum growth gm with the normalized beam power for

different values of α.

Pramana – J. Phys., Vol. 85, No. 5, November 2015 989



S Konar and Vyacheslav A Trofimov

magnitude and polarity. Or in other words, growth rate of the instability can be controlled

with the application of external field of chosen polarity and magnitude. MI can take place

only below the critical frequency �c which is given by

�c = ±
[

gβσP

(1 + σ)(1 + P)2
+ αησP

(1 + P)2
+ αηP

]1/2

. (45)

The instability is most efficient and reaches its maximum at g = gm when � = �m,

where gm = (�2
c/2) and �m = (�2

c/
√

2). To examine the MI growth, we take a typical

Cu:KNSBN crystal. Intermediate energy level is included in Cu:KNSBN crystal and

photovoltaic field is in the direction of optic axis. At λ0 = 0.5 μm, crystal parameters are

ne = 2.27, Ep = 2.8 × 106 Vm−1, η = 1.5 × 10−4, σ = 104, r33 = 200 × 10−12 m/V.

The scaling parameter x0 = 10 μm, α = 117.3 and g = 1. We take three different

values of Ea, in particular, Ea = −2 × 106 Vm−1, 0 and 2 × 106 Vm−1 corresponding

to β = −83.79, 0 and 83.79 respectively. Figure 1 depicts the MI gain spectrum g(�)

as a function of perturbation frequency �. The variation of �m with P for three values

of β has been depicted in figure 2. Initially, �m increases with the increase in the value

of P , then decreases with the increase in P . In order to examine the role played by α

on the growth of instability, we have demonstrated in figure 3, the variation of maximum

growth gm with the normalized beam power for three different values of α. As expected,

a higher value of α enhances the growth of instability. In conclusion, with the application

of external electric field, it is possible to initiate modulation instability and control the

growth of instability in those media where MI was hitherto prohibited.

9. Conclusion

A brief review of some selected developments in the field of optical spatial solitons in

PR media has been presented. Underlying mechanism responsible for the formation of

solitons has been discussed for both single- and two-photon PR media. Vector solitons,

particularly, incoherently coupled solitons due to single photon and two-photon PR phe-

nomena have been highlighted. Existence of some missing solitons has been pointed out.

Modulation instability which is a precursor to soliton formation has also been considered.

Important applications of PR solitons have been highlighted.
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