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Abstract. Matter-wave bright solitons in bichromatic lattice potentials are considered and their
dynamics for different lattice environments are studied. Bichromatic potentials are created from
superpositions of (i) two linear optical lattices and (ii) a linear and a nonlinear optical lattice. Effec-
tive potentials are found for the solitons in both bichromatic lattices and a comparative study is
done on the dynamics of solitons with respect to the effective potentials. The effects of disper-
sion on solitons in bichromatic lattices are studied and it is found that the dispersive spreading
can be minimized by appropriate combinations of lattice and interaction parameters. Stability of
nondispersive matter-wave solitons is checked from phase portrait analysis.
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1. Introduction

In the past few years, studies on Bose–Einstein condensates (BECs) have gained a tremen-
dous momentum due to the possibility to realize different phenomena of nonlinear optics
and condensed-matter physics by controlling different parameters precisely [1]. For
example, capability of changing scattering length with the help of Feshbach resonance
[2] has allowed to generate the so-called matter-wave solitons [3]. The ability to load
BECs in optical lattices has offered possibilities to control the dynamics of mattter-wave
solitons [4]. Optical lattice (OL) is a periodic potential produced by two or more counter-
propagating laser beams. Depth and geometry of an OL can easily be changed externally.
Flexibility of an OL has successfully been used to observe many phenomena such as
Josephson effects, squeezed states, Landau–Zener tunnelling and Bloch oscillations, clas-
sical and quantum superfluid–Mott insulator transition, Anderson localized waves and
gap matter-wave solitons [5].

Formation of solitons and their subsequent evolution are, generally, made in a
trap having cigar-shaped geometry [3]. This trapping geometry is obtained by making
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frequencies of transverse components (ω⊥) of the confining potential much greater
than that of the longitudinal component (ωx ). Additionally, ω⊥ satisfies the condition
h̄ω⊥ � μ (μ is the chemical potential) such that the system remains effectively one-
dimensional (1D) and contains a phase-coherent sample [4,6]. In cigar-shaped geometry,
the BEC is satisfactorily described by means of a mean-field equation, often called Gross–
Pitaevskii (GP) equation. The GP equation with an optical lattice potential V (x) in an
effective one-dimensional configuration (quasi-one-dimensional (Q1D)) can be written
as [4,7]

i
∂φ

∂t
= −1

2

∂2φ

∂x2
+ V (x)φ + γ0|φ|2φ, (1)

where V (x) = Vp cos(2kpx) with Vp and kp the strength and wavenumber of the OL,
and γ0 is the strength of interatomic interactions. Here, the order parameter φ(x, t)
is normalized to the total number of atoms (N ) in the condensate such that N =∫ +∞
−∞ | φ |2 dx . In eq. (1), length, time and energy are measured in units of a⊥ =√
h̄/(mω⊥), ω−1

⊥ and h̄ω⊥ to make the equation dimensionless. One can experimentally
realize the system described in eq. (1) by loading BECs in OLs and then by removing
magnetic trap adiabatically. On the other hand, in the real experimental situation ωx is
very small (a few Hz) and its modification over OL is negligible. Equation (1) permits
exact bright (dark) soliton solutions when γ0 is negative (positive) for V (x) = 0 [8].

Recently, it has been realized that a BEC can also be loaded in optical potentials result-
ing from the sequential creations of two lattice structures. Such lattices are often termed
as bichromatic lattices. Mathematically, a bichromatic lattice can be described by [9]

VLL(x) = Vp cos(2kpx) + Vs cos(2ks x), (2)

where ks and Vs are respectively the strength and the wavenumber of the additional lattice.
Understandably, the first term in (2) is called the primary lattice while the second term is
called the secondary lattice. Like primary lattices, the secondary lattice potential in (2)
affects only the linear term in (1) and, thus, it is called a secondary linear optical lattice
(LOL) and the resulting potential VLL(x) is termed as a simple bichromatic lattice (SBL).

One can also introduce spatial periodicity in the system by modulating the nonlinear
interaction with the help of an optical Feshbach resonance (FR) [10]. Optical FR is similar
to magnetic FR. Here a laser beam is tuned close to the resonance of a colliding atom pair
with the molecular state in the excited potential (figure 1). In this condition, scattering
length can be modified by varying the detuning parameter (�) or the intensity I of the
laser beam. If we use, for example, a laser beam with intensity I = I0 cos2(kN x), then
the change of scattering length a can be written as

a(x) = a0 + α
I

(� + I )
.

For large detunning (|�| � I ), scattering length can be modified according to

a(x) = a0 + a1 cos2(kN x).

The periodic variation of a(x) can cause same spatially periodic pattern in the interatomic
interaction to create the so-called nonlinear optical lattice (NOL).

In the presence of NOL, γ0 in (1) changes to γ0 + γ1 cos(2kN x) [6,12,13], where γ1

and kN are respectively the strength and wavenumber of the NOL. As a result, BECs
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Figure 1. Schematic diagram of an optically-induced Feshbach resonance. A single
laser beam of intensity I is used for optically coupling the collisional state |0 〉 to a
bound level |1 〉 in the excited molecular potential. Two laser beams, instead of one,
can be used to change scattering length more precisely (diagram is not shown) [11].

loaded in a primary optical lattice may also be considered as BECs in mixed bichromatic
lattices resulting from the combinations of linear and nonlinear optical lattices. A mixed
bichromatic lattice (MBL) can be written as

VLN(x) = Vp cos(2kpx) + γ1 cos(2kN x)|φ|2. (3)

Unlike eq. (2), the second term in (3) stands for a secondary NOL. From eqs (2) and (3)
we also see that a simple bichromatic lattice potential is state-independent while a mixed
bichromatic lattice potential is state-dependent [13].

In general, when a BEC with attractive interatomic interaction is loaded in an OL (pri-
mary), its dynamics changes, mainly, due to the new trapping centres introduced by this
OL [4]. The sequential presence of another LOL or NOL further affects this dynam-
ics. For example, the spatially periodic variation of interaction between atoms in a BEC
loaded in OL can result in delocalized transitions [14] which contrast the behaviour of
BECs in OLs with homogeneous atomic interactions. This system can also support gap
solitons in the upper half of the forbidden gap even when a0, the background atomic scat-
tering, is made to vanish. Recently, we have studied that a perturbative NOL makes the
localized states in OLs wider while a relatively stronger NOL squeezes these states [6].
An extensive study on the existence, stability and mobility of solitons in BEC with spa-
tially modulated atomic interaction can be found in [15]. Thus, study on the dynamics of
solitons under the simultaneous action of two lattices is a subject of considerable current
interest.

In the present paper we are trying to do a comparative study on the motion of the matter-
wave bright solitons in bichromatic optical lattices which are formed by superpositions of
(i) two different linear optical lattices and (ii) a linear and a nonlinear optical lattice. In
particular, we emphasize on situations where wavenumbers of the OLs are unequal and
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obtain different effective potentials for the solitons. We see that the effective potential
for the soliton confined in a primary OL gets modified due to the simultaneous presence
of a secondary lattice and the modification depends on relative values of wavenumbers
of the OLs. We find that the response of a soliton to the bichromatic lattice potentials is
quite interesting. In §2, we reconsider the problem within the framework of variational
formulation and obtain expressions for the effective potentials of the solitons embedded
in simple and mixed bichromatic lattices. In §3, we study the dynamics of solitons for
their different initial locations in the effective potentials. We achieve this goal by direct
numerical simulations of the Gross–Pitaevskii equation. In §4, we study variation of
soliton’s width arising due to dispersion during propagation in the condensates. To that
end, we write effective potentials for widths of the matter-wavepackets and also study the
nature of stability from phase-portrait diagrams. Finally, in §5, we make some concluding
remarks.

2. Variational formulation

The GP equation in (1) is nonintegrable and, thus, it cannot be solved exactly by analytical
methods. Therefore, our study is based on an approximate method, namely, the variational
method [16]. To proceed with this approach, we restate the initial boundary value problem
in (1) as a variational problem

∫
L(φ, φ∗, φt , φ

∗
t , φx , φ

∗
x ) dxdt = 0. (4)

Lagrangian density of (1) obtained from (4) is given by

L = i

2
(φφ∗

t − φ∗φt ) + 1

2
φxφ

∗
x + Vp cos(2kpx)φφ∗

+ Vj (x)φφ∗ + 1

2
γ0φ

2φ∗2
, j = 1, 2, (5)

where V1(x) = Vs cos(2ks x) and V2(x) = 1
2γ1 cos(2kN x)|φ|2 stand for secondary lat-

tice potentials which contribute to create simple and mixed bichromatic optical lattices
respectively. In the variational formulation, one of the main tasks is to find a suitable
trial solution for the system. We know that in the absence of OLs, the solution of (1)
for self-focussing nonlinear interactions is a sech function [17] with constant parameters.
To incorporate the effects of optical lattices, we postulate that these parameters become
time-dependent. Thus, we write the trial solution as [18,19]

φ(x, t) = A(t)sech

[
(x − x0(t))

a(t)

]

e[i ẋ0(x−x0(t))+iβ(t)(x−x0(t))2+i	(t)], (6)

where A(t) is the real amplitude, a(t) is the width, x0(t) stands for the position of the
centre of mass, 	(t) is the phase and β(t) is the frequency chirp of the matter-wavepacket.
Clearly, ẋ0 = dx0/dt . Inserting (6) in (5) and integrating the resulting L over x from −∞
to +∞, we get the average Lagrangian density

〈L〉 = A2

3a
+ 2

3
γ0a A4 + 2πVpa2 A2 cos(2kpx0)

sinh(πakp)
kp + 1

3
π2a3 A2β2 − a A2 ẋ2

0

+ 1

6
π2a3 A2β̇ + 2a A2	′ + 〈L( j)

S 〉, j = 1, 2, (7)
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where

〈L(1)
S 〉 = 2πVsa2 A2 cos(2ks x0)

sinh(πaks)
ks

and

〈L(2)
S 〉 = 2

3
πγ1a2 A4 cos(2kN x0)

sinh(πakN )
kN (1 + a2k2

N ). (8)

Clearly, 〈L(1)
S 〉 and 〈L(2)

S 〉 in (8) stand for the average Lagrangian densities resulting from
the secondary linear and nonlinear optical lattices respectively. We now apply Ritz opti-
mization ((δ 〈L〉/δσ ) = 0 with σ(=A, a, x0, β and 	)) to (7) with a view to get equations
for the variational parameters. Appropriate combinations of these equations give ordi-
nary differential equations for different physical quantities of bright matter-wavepackets
in bichromatic optical lattices:

d

dt
[2a A2] = 0, (9a)

− 2πVpak2
p

sin(2kpx0)

sinh(πakp)
− 2πVsak ′2

L

sin(2ks x0)

sinh(πaks)
+ ẍ0 = 0 (9b)

and

4

π2a3
+ 2Nγ0

π2a2
− 12Vpakp

π

cos(2kpx0)

sinh(πakp)
[1 − πakp coth(πakp)]

−12Vpakp

π

cos(2kpx0)

sinh(πakp)
[1 − πakp coth(πakp)] − ä0 = 0. (9c)

In conjunction with the normalization condition
(∫ +∞

−∞ |φ|2dx = N
)

, eq. (9a) gives

that the number of atom in the system is conserved. For this conservative system, eq. (9b)
describes the evolution of the centre of the soliton. Variations of soliton’s widths can be
determined from eq. (9c) also.

In the above, we present equations for parameters of a matter-wavepacket in simple
bichromatic lattices (SBLs). Similar equations for solitons in mixed bichromatic lattices
(MBLs) are given by

− 2πVpak2
p

sin(2kpx0)

sinh(πakp)
− 1

3
Nπγ1

sin(2kN x0)

sinh(πakN )
k2

N (1 + a2k2
N ) + ẍ0 = 0,

(10a)

and

4

π2a3
+ 2Nγ0

π2a2
− 12Vpakp

π

cos(2kpx0)

sinh(πakp)
[1 − πakp coth(πakp)]

+ 2Nγ1

π
ak2

N

cos(2kN x0)

sinh(πakN )
[π coth(πakN ) − 2akN

+ πa2k2
N coth(πakN )] − ä0 = 0. (10b)
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Note that, for MBL, we have an equation similar to eq. (9a). This implies that the BEC
in MBLs is also a conservative system. In the next sections, we shall judiciously use eqs
(9) and (10) to extract information on the dynamics and stability of matter-wavepackets
in bichromatic lattices.

3. Matter-wave with different lattice environments

In analogy with the propagation of optical pulses in transparent medium, the matter-wave
in BEC may acquire a chirp due to the effects of nonlinearities during its motion. This
chirp causes the instantaneous frequency of the wavepacket to change with time. If the
instantaneous frequency rises (decreases) then we have an up-chirp (down-chirp) [20].
The main effect of the chirp is that it minimizes propagation durations of wavepackets in
nonlinear media. In the present case, the appearance of chirp introduces a change in the
width [∂〈L〉/∂β = 0, da/dt = 2βa] that may induce instability and may be responsible
for the short duration of propagation. In the context of nonlinear optics, it may be noted
that the chirp of a pulse can be removed by propagating it through optical components
with suitable dispersion. In view of this, we consider, in this section, the dynamics of
wavepackets neglecting instantaneous frequency change over it.

The dynamics of matter-wave solitons in bichromatic lattice potentials, as noted above,
can be described by the equations of x0(t) in (9b) and (10a). These are second-order
ordinary differential equations that can be used to extract effective potential for the centre
of the wavepacket by rewriting them in the form of Newtonian equations

ẍ0 = −dVeff

dx0
, (11)

where Veff is the effective potential. For the simple bichromatic lattice (SBL) Veff is given
by

VSBL(x0) = πVpkpa

sinh(πakp)
cos(2kpx0) + πVsksa

sinh(πaks)
cos(2ks x0). (12a)

Similarly, for the mixed bichromatic lattice (MBL) Veff is given by

VMBL(x0) = πVpkpa

sinh(πakp)
cos(2kpx0)

+π

6

Nγ1kN (1 + k2
N a2)

sinh(πakN )
cos(2kN x0). (12b)

The Newtonian equation in (12) describes a particle moving in a potential Veff. Velocity
of this particle obtained from (12) is given by

ẋ0 = ±√
C0 − 2Veff, (13)

where C0 is the value of Veff at t = 0, i.e., at x0 = x0(0). From (13) it is clear that
for both SBL and MBL, the velocity of the soliton changes with different values of Veff.
Initial velocity of motion is determined by both lattice and soliton parameters, and also by
x0(0). On the other hand, from (12a) and (12b), we see that Veff arises from superpositions
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Figure 2. Effective potential Veff as a function of x0 for N = 5, γ0 = −1, a =
0.5, Vp = 0.5, Vs = 0.5, γ1 = −0.5. (a) shows Veff for kp/ks = 0.2/0.6 while (b)
shows Veff for kp/ks = 0.2/0.8. Dotted and dashed curves in both panels represent
VSBL(x0) and VMBL(x0).

of two periodic potentials, namely, primary and secondary optical lattices. For bright
solitons (γ1 = −|γ1|) embedding in the SBL, these two lattices are in-phase (eq. (12a))
while in the MBL they are out of phase (eq. (12b)). In addition, magnitudes of secondary
lattice potentials in SBL and MBL are different since their dependence on a are different
due to their different origins. Therefore, it is interesting to see how the effective potentials
for solitons in simple and mixed bichromatic lattices are modified by varying the lattice
and soliton parameters.

In view of the above, we plot in figure 2, Veff as a function of x0 for different spa-
tially incommensurable lattice periods. Figure 2a shows Veff for kp/ks = 0.2/0.6 while
figure 2b shows Veff for kp/ks = 0.2/0.8. From the curves in these figures we see that
the superposition of a secondary lattice with the primary lattice creates new intensity dis-
tribution patterns. As a result, some new local minima appear inside the minima of the
primary lattice. Depth and position of these minima are different for different bichromatic
lattices due to their unequal dependence on different parameters. For example, strength
of the secondary lattice in MBL (eq. (12b)) is proportional to N while it does not explic-
itly depend on N in SBL (eq. (12a)). In both cases, the effective potential varies with the
change of lattice incommensurability but these changes are not the same in MBL and SBL
even when other parameters are the same. Various incommensurabilities are responsible
for various locations of minima which may support stable minicondensates (figures 2a
and 2b).

In order to examine the ability of linear and nonlinear secondary lattices in altering the
dynamics of solitons by introducing extrema, we consider time evolution of wavepackets
in non-dispersive condensate media. In particular, we consider different initial locations
x0 (=x0(0)) with respect to the effective potential Veff for kp/ks = 0.2/0.6 (figure 2a)
in SBL (dotted curve). We take three x0 values, namely, x0 = 8, 10 and 13 to account
for three different initial environments of solitons in the lattice. Clearly, the initial envi-
ronments of solitons embedded in SBLs and MBLs are not the same even for the same
x0 values. For example, the point x0 = 8 corresponds to a minimum (maximum) of
SBLs (MBLs) while x0 = 10 and x0 = 13 respectively stand for maximum (minimum)
and second minimum (maximum) for SBLs (MBLs). To that end, we solve (1) numer-
ically using the Method of Lines (MOL) algorithm [21] with the help of Mathematica
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Figure 3. Evolution of density profiles in bichromatic lattices with wavenumber ratio
kp/ks = kp/kN = 0.2/0.6, Vs = 0.5, Vp = 0.5, γ0 = −1.0, γ1 = −0.5, N = 5 and
a = 0.5. Three pairs of density plots are displayed for different initial environments,
namely, top pair for x0 = 8, middle and bottom pairs for x0 = 10.25 and 13. In each
pair, left panel gives density plot of the wavepackets in SBL while right panel gives
density plots of the wavespackets in MBL.
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[22] for φ(x, 0) = A sech[(x − x0)/a] and φ(−25, t) = φ(25, t) as initial and boundary
conditions.

The evolution of soliton’s density profiles in simple and mixed bichromatic lattices are
shown pairwise in figure 3. In each pair (top, middle and bottom), left panel gives density
of solitons in SBL and right panel gives the same in MBL. In the top pair, soliton in SBL
at x0 = 8 (left panel) does not move with time. However, for the same initial position,
the soliton in MBL starts to oscillate about the nearest minimum in the effective position
(right panel). This can be explained in the following way. At x0 = 8 in SBL, no energy
transfer takes place from the lattice to the soliton. As a result, the soliton does not gain any
energy to move or to suffer from instability. In MBL, the soliton at x0 = 8 acquires some
energy from the lattice resulting in an increase of its kinetic energy (KE). The excess KE
causes the soliton to move towards a minimum energy location and to oscillate about that
minimum. Here the gained energy is still too low to induce instability.

For x0 = 10.25 (middle pair), the new lattice environment leads the soliton in SBL to
a nearest stable configuration position (minimum energy) by transferring some energy to
it. Here also, the additional energy manifests as periodic motion (left panel). The soliton
at x0 = 10.25 in MBL, however, gets the lowest energy position and does not move with
time (right panel).

The solition in SBL at x0 = 13 (bottom pair) again gets a minimum energy location and,
therefore, no energy transfer takes place from the lattice to the wavepackets. As a result,
the soliton neither propagates nor gets excitation that induces instability (left panel). The
local maxima at x0 = 13 in MBL, on the other hand, transfers sufficient energy to the
soliton. The excess energy here is enough to induce instability by creating imbalance
between nonlinearity and lattice energy. The induced instability leads the soliton to decay
during propagation (right panel).

4. Matter-wavepackets with dispersion

In this section, we consider the effects of dispersion which cause decay of matter-
wavepacket with time. In the present formulation, this dispersion is introduced by
frequency chirp which makes width of the wavepacket time-dependent. In view of this,
we ignore motion of the centre of mass and concentrate on the change of width with time.
Equations for widths of the solitons in simple and mixed bichromatic lattices are given by

4

π2a3
+ 2Nγ0

π2a2
− 12Vpakp

π sinh(πakp)
[1 − πakp coth(πakp)]

− 12Vsaks

π sinh(πaks)
[1 − πaks coth(πaks)] − ä0 = 0 (14)

and

4

π2a3
+ 2Nγ0

π2a2
− 12Vpakp

π sinh(πakp)
[1 − πakp coth(πakp)]

+ 2Nγ1ak2
N

π sinh(πakN )
[π coth(πakN ) − 2akN + πa2k2

N coth(πakN )]
− ä0 = 0. (15)
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Figure 4. Effective potential Veff as function of a for Vp = 0.5, Vs = 0.5, γ1 =
−0.5, γ0 = −1.0 and kp/ks = 0.2/0.6. (a) gives VSBL while (b) gives VMBL. The
solid, dotted and dashed curves stand for effective potentials for N = 4.8, 5.0 and 5.2.

[Equations (14) and (15) are written respectively from (9c) and (10b) with x0 = 0].
Effective potentials for the widths can be written as

VSBL(a) = 2

π2a2
+ 2Nγ0

π2a
+ 12Vpkp

π

a

sinh(πkpa)

+ 12k ′Vs

π

a

sinh(πk ′a)
(16)

VMBL(a) = 2

π2a2
+ 2Nγ0

π2a
+ 12Vpkp

π

a

sinh(πkpa)

+ 2Nγ1kN

π sinh(πakN )
(1+a2k2

N ). (17)

The effective potentials for widths in eqs (16) and (17) contain two extra terms compared
to Veff for x0. First term can be interpreted as a dispersive term while the second term
resulted from nonlinearity which opposes effects of the first term when γ0 < 0. Note
that the lattice potential terms (third and fourth terms) may either help or oppose first
and second terms depending on their signs. With a view to find exact contribution of
these terms to support non-dispersive matter-wave, we plot VSBL in figure 4a and VMBL in
figure 4b with a for different negative values of γ0. We notice that for γ0 = 0, effective
potential decreases monotonically (not shown in figure 4). This implies that optical lattice
alone could not stop the expansion of a(t). For appropriate values of −γ0 and/or N , the
nonlinear term interplays with OLs in such a way that their resulting potential can balance
the dispersive term to stop spreading bright solitons.

From figures 4a and 4b, we see that the potential becomes zero for a = al and ar .
Between al and ar there is a minimum at a = am . This implies that spreading of mater-
wave starts at al and stops at ar . After reaching ar it starts to compress and continues
up to al through am . In this way, width of the wavepacket oscillates between al ad ar

with time during propagation. Clearly, the variation of a(t) with time in MBL is larger
than that in SBL. We calculate frequency of oscillation (ν) of width linearizing eqs (14)

270 Pramana – J. Phys., Vol. 81, No. 2, August 2013



Matter-wave bright solitons

Figure 5. Frequency as a function of N for Vp = 0.5, Vs = 0.5, γ1 = −0.5, γ0 =
−1.0 and kp/ks = 0.2/0.6. The solid and dotted curves give results for SBL and
MBL around their stable equilibrium points a0, namely, a0 = 0.425 and a0 = 0.365.

Figure 6. Phase portrait of soliton’s width in BEC embedded in simple bichromatic
lattices (SBL) for N = 5, Vp = 0.5, Vs = 0.5, γ1 = −0.5, γ0 = −1.0. (a) ȧ(0) =
0, a(0) = 0.3, (b) ȧ(0) = 0, a(0) = 0.43 and (c) ȧ(0) = 0, a(0) = 0.75.
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and (15) about the minima of VSBL and VMBL respectively. Frequency (ν) vs. N curve in
figure 5 shows that the frequency ν decreases with the increase in N (or γ0). This implies
that, for larger N , effective interatomic interaction becomes strong enough to hold the
atoms tightly and to oppose change of the width of soliton with time. Note that frequency
of fluctuation of soliton’s width in MBL (dotted curve) is always greater than that in SBL
(solid curve) because of the state-dependent nature of the NOL. However, the fluctuation
of width in both bichromatic lattices reduces to zero at a particular value of N , say, Nm .
Figure 5 indicates that the value of Nm in MBL is greater than that in SBL.

Dynamical characteristics of the system can also be checked from the phase portraits.
It is easy to construct qualitative phase portrait from VSBL or VMBL for the nonlinear
conservative systems given in eqs (16) and (17) [23]. Phase portraits of soliton’s widths
for SBLs and MBLs are displayed respectively in figures 6 and 7. At the minima of both
VSBL and VMBL we get centre-type equilibrium states (b). In the neighbourhood of the
centre (on either side of the minimum) these curves have ellipse-like shapes but they are
deformed when moving away from the centre. We see that, for both SBL and MBL,
phase diagrams are the same. The only difference is that a stable centre occurs in MBL
for relatively smaller value of a [6].

Figure 7. Phase portrait of soliton’s width in BEC embedded in mixed bichromatic
lattices (MBLs) for N = 5, Vp = 0.5, Vs = 0.5, γ1 = −0.5, γ0 = −1.0. (a)
ȧ(0) = 0, a(0) = 0.242, (b) ȧ(0) = 0, a(0) = 0.265 and (c) ȧ(0) = 0, a(0) = 0.3.
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5. Conclusion

We have studied the dynamics of matter-wave bright solitons in simple (SBL) and mixed
bichromatic (MBL) optical lattices within the framework of variational approach. Con-
sidering bichromatic lattice as superpositions of two lattices of spatially incommensurate
periodicities, we have constructed effective potentials for the centre of solitons embedded
in those lattices. It is seen that dynamics of the matter-wave depends sensitively on initial
environments in both bichromatic lattices. However, for the same initial environments in
the SBL and MBL, solitons execute different dynamics because of their different origins.

We have investigated the dispersive nature of matter-waves by constructing effec-
tive potentials for widths. It is noted that the size of a wavepacket changes during
evolution keeping the number of atoms (N ) constant. The frequency of changing size
varies with N and/or with strength of atomic interactions. This change of size can be
removed/minimized by suitably choosing lattice and soliton parameters. We have found
that the fluctuation in size of a wavepacket in MBL is always greater than that of a
wavepacket in SBL. We have also found that, around stable equilibrium, the number of
atoms required to propagate a fixed size wavepacket in MBL is greater than that needed
in SBL even when other parameters are identical.

We have envisaged a brief dynamical systems theory analysis to examine the nature
of stability with the help of effective potentials. It is seen that, at the minima of the
potential, the system has a centre. This analysis also leads us to conclude that a stable
soliton supported by mixed bichromatic lattices is narrower than that supported by simple
bichromatic lattices.
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