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Nonlinear propagation of dust-acoustic solitary waves
in a dusty plasma with arbitrarily charged dust
and trapped electrons
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Abstract. A theoretical investigation of dust-acoustic solitary waves in three-component unmag-
netized dusty plasma consisting of trapped electrons, Maxwellian ions, and arbitrarily charged cold
mobile dust was done. It has been found that, owing to the departure from the Maxwellian elec-
tron distribution to a vortex-like one, the dynamics of small but finite amplitude dust-acoustic (DA)
waves is governed by a nonlinear equation of modified Korteweg–de Vries (mKdV) type (instead
of KdV). The reductive perturbation method was employed to study the basic features (amplitude,
width, speed, etc.) of DA solitary waves which are significantly modified by the presence of trapped
electrons. The implications of our results in space and laboratory plasmas are briefly discussed.
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1. Introduction

There has been a great deal of interest in understanding different types of collective pro-
cesses in dusty plasmas (plasmas with extremely massive and negatively charged dust
grains), because of its vital role in the study of astrophysical and space environments,
such as cometary tails, asteroid zones, planetary rings, interstellar medium, earth envi-
ronment, etc. [1–7]. These dust grains are invariably immersed in the ambient plasma and
radiative background. The interaction of these dust grains with the other plasma particles
(viz. electrons and ions) is due to the charge carried by them. The dust grains are charged
by a number of competing processes, depending upon the local conditions, such as photo-
electric emission stimulated by the ultraviolet radiation, collisional charging by electrons
and ions, disruption and secondary emission due to the Maxwellian stress, etc. [8–12].

It is found that the presence of static charged dust grains modifies the existing plasma
wave spectra [13–20], whereas the dust charge dynamics introduces new eigenmodes in
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dusty plasmas. Bliokh and Yarroshenko [13] studied electrostatic waves in dusty plas-
mas and applied their results in interpreting the spoke-like structures in Saturn’s rings.
Angelis et al [14] investigated the propagation of ion-acoustic waves in a dusty plasma,
in which a spatial inhomogeneity is formed by the distribution of immobile dust parti-
cles [21]. They applied their results for interpreting the low-frequency noise enhancement
observed by the Vega and Giotto space probes in the dusty regions of Halley’s comet. Rao
et al [22], for example, were the first to report theoretically the existence of extremely
low phase velocity (in comparison with the electron and ion thermal velocities) DA waves
in an unmagnetized dusty plasma whose constituents are inertial charged dust fluid and
Boltzmann electrons and ions. Thus, in the DA waves the mass of the dust particle pro-
vides the inertia, whereas the restoring force comes from the pressures of inertialess
electrons and ions. A laboratory experiment [23] has conclusively verified the theo-
retical prediction of Rao et al [22] and reported some nonlinear features of the DA
waves. Mamun et al have studied nonlinear DA waves in a two-component dusty plasma
consisting of a negatively charged dust fluid and Maxwellian [24] or non-Maxwellian [25]
distributed ions. This study has extended our earlier work to a three-component dusty
plasma which consists of a negatively charged dust fluid, Boltzman distributed electrons
and free as well as trapped ions [26,27] which has been found to exhibit by the numerical
simulation studies on linear and nonlinear properties of DA waves [28]. Therefore, in our
present work, we consider an unmagnetized dusty plasma system containing vortex-like
electrons, Maxwellian ions, and arbitrarily charged cold mobile dust and study the basic
properties such as amplitude and width of DA solitary waves.

The manuscript is organized as follows. The basic equations governing the plasma sys-
tem under consideration is presented in §2. The mKdV equation is derived by employing
the reductive perturbation method for trapped electron in §3. The solitary wave solution
of this mKdV equation is obtained and the properties of these DA solitary structures are
discussed in §4. Finally, a brief discussion is presented in §5.

2. Governing equation

We consider a three-component unmagnetized dusty plasma consisting of Maxwellian
ions, trapped electrons, and arbitrarily charged cold mobile dust. At equilibrium, we have
ni0 = ne0 − j Zdnd0, where ni0, nd0, and ne0 are the unperturbed ion, dust, and electron
number densities, respectively, Zd is the number of electrons residing on the dust grains,
and j = +1 (−1) for positive (negative) dust. The dynamics of such DA waves in one-
dimensional form whose phase speed is in between dust thermal speed (VTd) and ion
thermal speed (VTi), i.e. VTd � Vp � VTi is governed by [24]

∂nd

∂t
+ ∂

∂x
(ndud) = 0, (1)

∂ud

∂t
+ ud

∂ud

∂x
= − j

∂φ

∂x
, (2)

∂2φ

∂x2
= μene − μini − jnd, (3)
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where nd is the number density of the dust particle normalized to nd0, ni is the number
density of the ion normalized to ni0, ne is the number density of electron normalized
to ne0, ud is the speed of dust particle normalized to Cd = (ZdkBTe/md)

1/2, and φ is
the electrostatic wave potential normalized to kBTe/e, where Te is the electron temper-
ature, md is the mass of arbitrarily charged dust particles, and e is the magnitude of
the electron charge. μe = ne0/Zdnd0 and μi = ni0/Zdnd0. The time and space vari-
ables are in units of dust plasma period ω−1

pd = (md/4πnd0 Z2
de2)1/2 and the Debye length

λD = (kBTe/4πnd0e2)1/2, respectively.
To model an electron distribution with trapped particles, we employ a vortex-like

electron distribution function of Schamel [26,27], which solves the electron Vlasov
equation. Thus we have

fef = 1√
2π

e−1/2(v2−2φ), |v| >
√

2φ

fet = 1√
2π

e−1/2βe(v
2−2φ), |v| ≤ √

2φ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (4)

where the subscript f (t) represents the free (trapped) electron contribution. It may be
noted here that the distribution function, as presented here, is continuous in velocity space
and satisfies the regularity requirements for an admissible BGK solution [29]. Here, the
velocity v is normalized to the electron thermal velocity vte and βe, which is the ratio
of free-electron temperature (Tef) to trapped electron temperature (Tet), is a parameter
determining the number of trapped electrons. It has been assumed that the velocity of
nonlinear DA waves is small compared to the electron or ion thermal velocity.

Integrating the electron distribution functions over the velocity space, we readily obtain
the electron number density ne as

ne = I (φ) + eβeφ

√|βe|erf(
√

βeφ), βe ≥ 0,

ne = I (φ) + 2√
π |βe|W (

√−βeφ), βe < 0, (5)

where

I (φ) = [1 − erf(
√

φ)]eφ

erf(
√

βeφ) = 2√
π

∫ √
βeφ

0
e−y2

dy

W (
√−βeφ) = eβeφ

∫ √−βeφ

0
ey2

dy

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

If we expand ne for the small-amplitude limit and keep the terms up to φ2, it is found that
ne is the same for both βe ≥ 0 and βe < 0 and is finally given by

ne = 1 + φ − γφ3/2 + 1

2
φ2, (7)

where γ = 4(1 − βe)/3
√

π and βe is a parameter which determines the number of trapped
ions [30]. We note that βe = 1 (βe = 0) represents a Maxwellian (flat-topped) distribution,
whereas βe < 0 represents a trapped electron distribution.

Pramana – J. Phys., Vol. 80, No. 6, June 2013 1033



O Rahman and A A Mamun

3. Modified KdV equation for trapped electrons

We now follow the reductive perturbation technique [31] and construct a weakly nonlinear
theory for the DA waves with small but finite amplitude, which leads to the scaling of
independent variables through the stretched coordinates [26,27] as

ξ = ε1/4(x − vpt)

τ = ε3/4t

}

, (8)

where ε is the smallness parameter measuring the weakness of the dispersion and vp is
the nonlinear wave phase velocity. We can expand the perturbed quantities nd, ud, and φ

about their equilibrium values in powers of ε, including terms ε3/2,

nd = 1 + εn(1)
d + ε3/2n(2)

d + · · ·
ud = o + εu(1)

d + ε3/2u(2) + · · ·
φ = o + εφ(1) + ε3/2φ(2) + · · ·

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (9)

Next, substituting eqs (7)–(9) into eqs (1)–(3) one can obtain the lowest order continuity
equation, momentum equation, and Poisson’s equation which in turn can be solved as

u(1)
d = jφ(1)

vp
, (10)

n(1)
d = jφ(1)

v2
p

, (11)

v2
p = j2

μe + αμi
, (12)

where α = Te/Ti i.e., α is the ratio of the electron temperature (Te) and ion temperature
(Ti). Therefore, eq. (9) represents the linear dispersion relation for DA waves. It is clear
that the phase speed (vp) of SWs is independent of the polarity of dust particles. Putting
the values of eqs (7)–(12) into eqs (1)–(3), we obtain the next higher-order equations,

∂n(1)
d

∂τ
− vp

∂n(2)
d

∂ξ
+ ∂u(2)

d

∂ξ
= 0, (13)

∂u(1)
d

∂τ
− vp

∂u(2)
d

∂ξ
+ j

∂φ(2)

∂ξ
= 0, (14)

∂2φ(1)

∂ξ 2
= μeφ

(2) − γ [φ(1)]3/2 + μiαφ(2) − jn(2)
d . (15)
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Now, using eqs (13)–(15) one can easily eliminate (∂n(2)
d /∂ξ), (∂u(2)

d /∂ξ), and
(∂φ(2)/∂ξ), and obtain

∂φ(1)

∂τ
+ A

√
φ(1)

∂φ(1)

∂ξ
+ B

∂3φ(1)

∂ξ 3
= 0, (16)

where

A = 3γ

4

vp

(μe + αμi)
, (17)

B = vp

2(μe + αμi)
. (18)

Equation (16) is a mKdV equation for trapped electrons, exhibiting stronger nonlinearity,
smaller width, and larger propagation velocity of the nonlinear wave.

4. Solution of mKdV equation

The stationary solution of this mKdV equation can be obtained by transforming the inde-
pendent variables ξ and τ to x = ξ − u0τ , τ = τ , where u0 is the constant solitary
wave velocity. Now using the appropriate boundary conditions for localized disturbances,
viz. φ(1) → 0, (dφ(1)/dx) → 0, (d2φ(1)/dx2) → 0 at x → ±∞. Thus, one can express
the stationary solution of this mKdV equation as

φ(1) = φm sech4

[
(ξ − u0τ)



]
, (19)

where φm = (15u0/8A)2 is the amplitude and  = √
16B/u0 is the width of the solitary

waves, respectively. It is clear from eq. (19) that the solitary waves will be associated with
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Figure 1. The variation of amplitude (φm ) of the solitary wave with μe and μi for
u0 = 0.1, j = 1, α = 2, and βe = −0.9.
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Figure 2. The variation of amplitude (φm ) of the solitary wave with α and βe for
u0 = 0.1, j = 1, μi = 0.1, and μe = 1.1.

positive potential (φm > 0), and the width of the solitary waves will have positive value. It
should be noted here that the perturbation method, which is only valid for small but finite
amplitude limit, is not valid for large amplitude. As u0 > 0, there exist solitary waves with
positive potential only, i.e., solitary structures with enhanced density only. It is seen that as
u0 increases, the amplitude increases while the width decreases and, that as |βe| increases,
the amplitude decreases for βe < 0 (a vortex-like excavated trapped electron distribution)
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Figure 3. The variation of width () of the solitary wave with μi and μe for u0 = 0.1,
j = ±1, and α = 10.
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Figure 4. The variation of phase speed (vp) of the solitary wave with α for j = ±1,
μe = 0.1, and μi = 0.9.

and increases for βe > 0. It is clear that due to the trapped electrons, we have found
soliton-like structures of larger amplitude, smaller width, and higher propagation velocity
than that involving isothermal electron. From the dispersion relation we found that the
polarity of dust particles has no effect on the phase speed of these solitary waves. Figure
1 shows the variation of the amplitude (φm) of SWs with μe and μi for u0 = 0.1, j = 1,
α = 4, and βe = −0.9. From figure 1 we see that the amplitude (φm) of the SWs increases
by increasing the value of both μe (slowly) and μi (rapidly), but it has no effect on the
polarity of the dust particles. Figure 2 shows the variation of the amplitude (φm) of SWs
with α and βe for u0 = 0.1, j = 1, μi = 1.5, and μe = 0.5. Figure 2 shows that
the amplitude (φm) of the SWs increases by increasing the value of α (slowly) and βe

(very rapidly). Figure 3 shows the variation of the width () of SWs with μi and μe for
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Figure 5. The variation of width () of the solitary wave with α for u0 = 0.1, j =
±1, μe = 0.2, and μi = 0.8.
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u0 = 0.1, j = 1, and α = 10. Figure 3 shows that the width () of the SWs decreases
rapidly (slowly) by increasing the value of μi (μe). Figure 4 shows the variation of the
phase speed (vp) of SWs with α for j = ±1 (i.e., j = +1 for positively charged dust and
j = −1 for negatively charged dust), μe = 0.1, and μi = 0.9. Figure 4 indicates that
the phase of the SWs decreases by increasing the value of α but it does not depend on the
polarity of dust particles. Figure 5 shows the variation of the width () of SWs with α

for u0 = 0.1, μe = 0.2, μi = 0.8, and j = ±1. Figure 5 also indicates that the width of
the SWs decreases by increasing the value of α. It has been found that the width of the
solitary waves does not depend on the polarity of the dust particles.

5. Discussion

We have considered an unmagnetized collisionless three-component dusty plasma con-
sisting of extremely massive, micron-sized, arbitrarily charged, cold mobile dust grains,
Maxwellian ions, trapped electrons, and have studied the DA solitary waves associated
with positive potential only by deriving the mKdV equation. It has been found that the
basic features of such DA solitary waves are significantly modified by the presence of
trapped electrons. It is also found that the DA solitary waves in our dusty plasma model
differ from the usual KdV equation by their polarity, width, speed, and the power of
sech. The results, which have been obtained from this investigation, can be summarized
as follows:

(1) Dusty plasmas, whose constituents are cold dust particulates, Maxwellian ions, and
trapped electrons of different constant temperatures, are found to support solitary
waves associated with the non-linear DA waves.

(2) Furthermore, in the presence of vortex-like electron distribution, the dynamics of
weakly dispersive non-linear DA waves is governed by the mKdV equation, the sta-
tionary solution of which is represented in the form of an inverted secant hyperbolic
fourth profile. Thus, the potential polarity of the DA solitary waves in our dusty
plasma is different from the usual IA solitary waves in an electron–ion plasma.

(3) It is found that non-isothermal electrons are responsible for DA solitary waves which
have smaller width, larger amplitude, and higher propagation velocity than that
involving isothermal or Maxwellian electrons, and that they can be represented in
the form sech4(z/), instead of sech2(z/) which is the stationary solution of the
standard KdV equation.

(4) It is also clear that for a vortex-like excavated trapped electrons distribution, i.e., for
βe < 0, as |βe| increases the amplitude of the solitary waves decreases.

(5) It is also found that the polarity of dust particles has no effect on the nonlinear
propagation of DA solitary waves.

(6) It has also been found that the phase speed of DA solitary waves is independent of the
polarity of the dust particles, i.e., either positively charged or negatively charged dust
particles.

We hope that our present results should be helpful to understand the basic features of
the electrostatic disturbances in space and laboratory devices. The present work can also
provide a guideline for interpreting the most recent numerical simulation results, which
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exhibit the simultaneous presence of non-thermal ion distributions and associated DA
localized wave packets.
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