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Synchronizability on complex networks via pinning control
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Abstract. It is proved that the maximum eigenvalue sequence of the principal submatrices of
coupling matrix is decreasing. The method of calculating the number of pinning nodes is given
based on this theory. The findings reveal the relationship between the decreasing speed of maximum
eigenvalue sequence of the principal submatrices for coupling matrix and the synchronizability
on complex networks via pinning control. We discuss the synchronizability on some networks,
such as scale-free networks and small-world networks. Numerical simulations show that different
pinning strategies have different pinning synchronizability on the same complex network, and the
synchronizability with pinning control is consistent with one without pinning control in various
complex networks.
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1. Introduction

In the real world, many systems, such as Internet, World Wide Web, food webs, bio-
logical neural networks, electric power grids, social networks, etc., can be described by
models of complex networks. So far, complex networks have been intensively investi-
gated across many fields of science and engineering [1–5]. The synchronization of all
dynamical nodes in a network is one of the most interesting and significant phenomenon,
which has been widely studied in complex dynamical networks [6–12]. As we know, the
real-world complex networks usually have a large number of nodes. Therefore, it is diffi-
cult to realize synchronization by adding controllers to all nodes. It is important to achieve
synchronization by pinning part of the nodes, which is known as pinning synchronization
control. Some significant results have been obtained about the pinning synchronization on
complex networks [13–16]. Synchronizability (synchronization ability) on a complex net-
work is the ease by which synchronization can be achieved. However, there is no unique
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definition for the synchronization ability on complex networks. The synchronizability has
been studied in some literatures [17–21]. Nishikawa et al [17] found that the synchroniz-
ability on complex networks with a homogeneous distribution of connectivity is better
than heterogeneous one. Hong et al [18] investigated the effects of various factors such as
degree, characteristic path length, heterogeneity and betweenness centrality on synchro-
nization, and found a consistent trend between the synchronization and the betweenness
centrality. Comellas and Gago [19] studied the relevant factors influencing the synchro-
nization of complex networks by using spectral graph theory. Ma and Wang [20] studied
the effects of connectivity, coupling strength, average distance, heterogeneity, clusters
and weight distribution on the synchronizability on complex networks by introducing a
weight matrix extensively and deeply. Jalili [21] studied the robustness of synchroniz-
ability against random deletion of nodes in dynamical scale-free networks, and found
that as the network size decreases, the robustness of its synchronizability against random
removal of nodes declines. However, all the findings above on synchronizability were
based mainly on the topological structures of complex networks, and used the eigenvalue
ratio λN /λ2 for the coupling matrix A (A = −G, and G is defined in the following text)
as a measure of synchronizability without pinning control.

In this paper, we investigate the synchronizability on complex networks from the
perspective of pinning control, and use the decreasing speed of maximum eigenvalue
sequence of the principal submatrices for coupling matrix as the synchronizability indica-
tor. The effects of different pinning strategies in some main complex networks on synchro-
nizability are analysed, which include nearest-neighbour coupled networks, star-coupled
networks, globally coupled networks, scale-free networks and small-world networks. We
find that different pinning strategies have different synchronizabilities on the same com-
plex network, and synchronizability with pinning control is similar to the one without
pinning control on complex networks. For example, synchronizability of the high-degree
pinning is stronger than one of the random pinning and the low-degree pinning strategies
on small-world and scale-free networks. Two different complex networks, small-world
and scale-free networks, are more easily synchronized than the nearest-neighbour coupled
networks under the conditions without pinning control and with pinning control.

The rest of the paper is organized as follows. Some necessary preliminaries, hypothesis
and lemmas are presented in §2. Section 3 discusses the pinning synchronization scheme,
and gives the decreasing law of maximum eigenvalue sequence of the principal submatri-
ces for coupling matrix. In §4, the synchronizability on complex networks with pinning
control is analysed, and numerical simulations are given. Finally, conclusion is given
in §5.

2. Preliminaries

Consider a complex dynamical network of N identical coupled nodes, with each node
being an n-dimensional dynamical system [14].

ẋi (t) = f(xi (t)) + σ

N∑

j=1

gi j�x j (t), i = 1, 2, . . . , N , (1)
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where xi (t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn is the state vector of the i th node, f :
Rn → Rn is a smooth nonlinear vector field, σ is the overall strength of the coupling,
� ∈ Rn×n is the inner coupling matrix (� describes the individual coupling between
connected nodes of the network), G = (gi j )N×N is the coupling matrix representing the
topological structure of the network, where gi j are defined as follows: if there is a link
from node i to node j ( j �= i), then gi j = 1; otherwise, gi j = 0 (−G is a Laplacian
matrix). In addition, assume that G is a diffusive matrix, satisfying

gii = −
N∑

j=1
j �=i

gi j = −
N∑

j=1
j �=i

g ji , i = 1, 2, . . . , N . (2)

Assume that s(t) ∈ Rn is a solution of an isolated node, satisfying

ṡ(t) = f(s(t)), (3)

s(t) can be an equilibrium point, a periodic orbit, an aperiodic orbit, even a chaotic orbit
in the phase space.

If

lim
t→∞ ‖xi (t) − s(t)‖2 = 0, i = 1, 2, . . . , N , (4)

the coupled network (1) is said to achieve synchronization.
Define the error vector as

ei (t) = xi (t) − s(t), i = 1, 2, . . . , N . (5)

Next, we present some hypothesis and lemmas for later use.

Hypothesis 1. There exists a nonnegative constant ω and a positive definite matrix � ∈
Rn×n , such that f satisfies the following inequality:

(x − y)T [f(x) − f(y)] ≤ ω(x − y)T �(x − y), (6)

for any x, y ∈ Rn .

Lemma 1 [22]. Let eigenvalues of the matrix A have λ1, λ2, . . . , λn , and let eigenvalues
of the matrix B have μ1, μ2, . . . , μm , then n*m eigenvalues of the matrix A ⊗ B are
λiμ j (i = 1, 2, . . . , n; j = 1, 2, . . . , m).

Lemma 2 [23]. The following linear matrix inequality (LMI)

Q =
(

A B
BH C

)
< 0 (7)

is equivalent to one of the following conditions:

(1) A < 0 and C − BH A−1B < 0,
(2) C < 0 and A − BC−1BH < 0,
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where A = AH (AH is the conjugate transpose matrix for A), C = CH , ‘<’ is partial order
and matrix X < 0 represents that X is a negative definite matrix.

Lemma 3 (Cauchy Interlace Theorem) [24]. Let A be a Hermitian matrix of order n,
and let B be a principal submatrix of A of order n− 1. If λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn

lists the eigenvalues of A and μ1 ≤ μ2 ≤ · · · ≤ μn−2 ≤ μn−1 the eigenvalues of B, then
λ1 ≤ μ1 ≤ λ2 ≤ · · · ≤ μn−1 ≤ λn .

3. The pinning synchronization scheme

Suppose that coupling matrix G is irreducible (there are no isolated nodes on a complex
network). The general pinning synchronization scheme can be described by

ẋi (t) = f(xi (t)) + σ

N∑

j=1

gi j�x j (t) + ui (t), i = 1, 2, . . . , l, (8)

ẋi (t) = f (xi (t)) + σ

N∑

j=1

gi j�x j (t), i = l + 1, l + 2, . . . , N , (9)

where

ui (t) = −σdi�(xi (t) − s(t)) ∈ Rn, i = 1, 2, . . . , l, (10)

are n-dimensional controllers with the control gains di > 0 and � is a positive definite
matrix.

From eqs (8)–(10) and (3), we can obtain the following error equations:

ėi (t) = f(xi (t)) − f(s(t))

+ σ

N∑

j=1

gi j�x j (t) − σdi�(xi (t) − s(t)), i =1,2, . . . , l, (11)

ėi (t) = f(xi (t)) − f(s(t))

+ σ

N∑

j=1

gi j�x j (t), i = l + 1, l + 2, . . . , N . (12)

In the following, we give a synchronization criterion of the pinning synchronization
scheme in the form of Lemma 4.

Lemma 4. Suppose that Hypothesis 1 holds. The complex network via pinning con-
trol eqs (8), (9) and (10) (the pinning synchronization scheme) synchronizes globally
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if ωIN + σ(G − D) is a negative definite matrix, where D = diag(d1, . . . , dl , 0, . . . , 0)

and IN is a unit matrix of order N .

Proof. We assume the candidate Lyapunov function:

V (t) = 1

2

N∑

i=1

ei (t)
T ei (t). (13)

By differentiating V along the trajectories, we obtain:

V̇ (t) =
N∑

i=1

ei (t)
T ėi (t)

=
N∑

i=1

ei (t)
T [f(xi (t)) − f(s(t))] + σ

N∑

i=1

N∑

j=1

gi j ei (t)
T �e j (t)

− σ

l∑

i=1

di ei (t)
T �ei (t) ≤

N∑

i=1

ωei (t)
T �ei (t)

+ σ

N∑

i=1

N∑

j=1

gi j ei (t)
T �e j (t) − σ

l∑

i=1

di ei (t)
T �ei (t)

= ei (t)
T [(ωIN + σ(G − D)) ⊗ �] ei (t), (14)

where ⊗ is the Kronecker product, e(t) = (e1(t), e2(t), . . . , eN (t))T . Because � is a
positive definite matrix, according to Lemma 1, ωIN + σ(G − D) is a negative definite
matrix if and only if (ωIN +σ(G−D))⊗� is a negative definite matrix. From Lyapunov
stability theory, the proof is completed.

Now, we prove the decreasing law of maximum eigenvalue sequence of the principal
submatrices for the coupling matrix.

Suppose that

ωIN + σ(G − D) =
(

A B
BT C

)
. (15)

A = ωIl + σ(G̃ − D̃), Il is a unit matrix of order l, G̃ and D̃ are principal submatrices
of order for G and D, respectively. C = ωIN−l + σG [l + 1, l + 1]. The constant ω is
related to f. If σ is fixed, appropriate values of di can be selected to make A−BC−1BH a
negative definite matrix. Therefore, according to Lemma 2, ωIN +σ(G−D) is a negative
definite matrix if and only if C is a negative definite matrix. Now we can study the pinning
synchronization in complex networks using negative definiteness for low order matrix C.

Next, to calculate the number of pinning nodes and analyse the synchronizability on
complex networks, we prove Theorem 1, which reveal the decreasing law of maximum
eigenvalue sequence of the principal submatrices for the coupling matrix.
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Theorem 1. Suppose that G is a coupling matrix in a complex network. G[l, l] is a
principal submatrix of order N − l + 1 for G, and has the following form:

G [l, l] =

⎛

⎜⎜⎝

gll gll+1 ... gl N

gl+1l gl+1l+1 ... gl+1N

... ... ...

gNl gNl+1 ... gN N

⎞

⎟⎟⎠ , (16)

then 0 = λmax(G [1, 1]) > λmax (G [2, 2]) ≥ · · · ≥ λmax (G [N , N ]), where λmax(G[l, l])
is the maximum eigenvalue of G[l, l], (l = 1, 2,. . . , N ).

Proof. Suppose that N − l + 1 eigenvalues of the matrix G[l, l] are λi (G[l, l]), N − l
eigenvalues of matrix G[l + 1, l + 1] are λ j (G [l + 1, l + 1]) (i = 1, 2, . . . , N − l + 1;
j = 1, 2, . . . , N − l) and λ1(G [l, l]) ≤ λ2 (G [l, l]) ≤ · · · ≤ λN−l+1(G [l, l]),
λ1(G [l + 1, l + 1]) ≤ λ2(G [l + 1, l + 1]) ≤ · · · ≤ λN−l(G [l + 1, l + 1]). According
to Lemma 3,

λ1(G[l, l]) ≤ λ1(G [l + 1, l + 1]) · · · ≤ λN−l(G [l + 1, l + 1])

≤ λN−l+1(G [l, l])

holds. Therefore,

λmax(G[l + 1, l + 1]) ≤ λmax(G[l, l]).

The G[1,1] has unique zero eigenvalue, all the other eigenvalues are negative. Because
all eigenvalues of G[2,2] are negative,

λmax(G[1, 1]) > λmax(G[2, 2])

holds. After all,

0 = λmax(G[1, 1]) > λmax(G[2, 2]) ≥ · · · ≥ λmax(G[N , N ]).

The proof is completed.

Figures 1–6 show examples of numerical simulations of the decreasing law of maxi-
mum eigenvalue sequence of the principal submatrices for coupling matrix in some main
complex networks.

 (a)                                                  (b) 

Figure 1. (a) The sequential numbering and (b) the random numbering.
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Figure 2. The relation between maximum eigenvalue sequence of the principal sub-
matrices and the number of pinning nodes in a nearest-neighbour coupled network in
two strategies.
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Figure 3. The relation between maximum eigenvalue sequence of the principal
submatrices and the number of pinning nodes in a star-coupled network.
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Figure 4. The relation between maximum eigenvalue sequence of the principal
submatrices and the number of pinning nodes in a globally coupled network.
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Figure 5. The relation between maximum eigenvalue sequence of the principal
submatrices and the number of pinning nodes in a scale-free network in three
strategies.
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Figure 6. The relation between maximum eigenvalue sequence of the principal
submatrices and the number of pinning nodes in a small-world network in three
strategies.

As we can see from the proof above, if l ≥ 1, all the eigenvalues of G[l + 1, l +
1] are negative. Hence, we can always select an appropriate value of σ to make C =
ωIN−l + σG [l + 1, l + 1] a negative definite matrix. In other words, if l ≥ 1, the pinning
synchronization scheme synchronizes.

Now, the relationship among the overall strength of the coupling (σ ), the number of
pinning nodes (l) and λmax(G[l + 1, l + 1]) is given.

Suppose that ω is known. When

σλmax(G[l + 1, l + 1]) < −ω,

or

λmax(G [l + 1, l + 1]) < −ω/σ,

C is negative, i.e. the pinning synchronization scheme synchronizes with l pinning nodes.
Therefore, if σ is fixed, the number of pinning nodes can be calculated, or if l is fixed, σ

can be calculated.

4. Synchronizability analysis and numerical simulations

Now, we propose a descriptive notion about pinning synchronizability. Synchronizability
of the pinning scheme is the degree of strength of synchronization on complex networks
with pinning control. Under the same condition, the smaller the number of nodes needed
in the synchronization, the stronger is the synchronizability obtained in the same network.
According to λmax(G [l + 1, l + 1]) < −ω/σ , the lesser the value λmax(G[l + 1, l + 1])
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is, the smaller is the number of pinning nodes (l) required. From Theorem 1, for any
coupling matrix G:

λmax(G [1, 1]) > λmax(G [2, 2]) ≥ · · · ≥ λmax(G [N , N ])

holds. Therefore, the faster the decreasing speed of maximum eigenvalue sequence of
the principal submatrices for coupling matrix is, the stronger the synchronizability is in
a specific pinning strategy. Figures 1–6 show the relationship between λmax(G[l, l]) and
the number of pinning nodes in some main complex networks in various pinning strate-
gies. Obviously, synchronizability of the pinning scheme can be seen in different pinning
strategies.

Generally, three pinning strategies are used: the high-degree pinning strategy, the ran-
dom pinning strategy and the low-degree pinning strategy. Assume that a coupling matrix
is constructed by using numbering sequence of nodes from small to big in complex net-
works, and a numbering sequence of nodes is the same as the sequence of pinning nodes.
To the specific complex network, different numbering sequences of nodes correspond to
different coupling matrices and maximum eigenvalue sequence of the principal subma-
trices. If random pinning strategy is used to pin nodes, nodes are numbered randomly.
A coupling matrix is constructed according to the random numbering sequence of nodes,
and then the number of pinning nodes is calculated using the method above. If the high-
degree pinning strategy is used, nodes are numbered from nodes of high degree to nodes of
low degree, and then a coupling matrix is constructed to calculate the number of pinning
nodes. Similarly, we can use other pinning strategies.

4.1 Synchronizability on regular networks

4.1.1 Nearest-neighbour coupled networks. It is more difficult for a nearest-neighbour
coupled network to achieve synchronization. We use the sequential pinning strategy and
the random pinning strategy to investigate their synchronizability. In the sequential pin-
ning strategy, a coupling matrix is constructed by numbering the sequence of nodes. The
sequential numbering and the random numbering are shown in figures 1a and 1b (N = 8),
respectively.

Here is a nearest-neighbour coupled network with 500 nodes, and degrees of each node
are 6. Figure 2 gives the relationship between the maximum eigenvalue sequence of the
principal submatrices and the number of pinning nodes in the sequential pinning strat-
egy and the random pinning strategy. It is found that synchronizability of the sequential
pinning strategy is very weak, i.e., even if the number of pinning nodes (l) is larger, the
pinning effect is very poor.

4.1.2 Star-coupled networks. A star-coupled network is a network with N nodes, which
has a centre node C0 with N− 1 degrees, and other nodes with 1 degree. If l < C0,
λmax(G[l, l]) > −1, otherwise (l ≥ C0) λmax(G[l, l]) = −1.

Figure 3 shows the relation between maximum eigenvalue sequence of the principal
submatrices and the number of pinning nodes in a star-coupled network, which has 500
nodes, and C0 = 200. Obviously, synchronizability on star-coupled networks is weaker.

4.1.3 Globally coupled networks. Each node is connected to each other in a globally
coupled network, and it is the easiest to achieve synchronization in these networks.
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Because a coupling matrix is not related to numbering sequence of nodes in a globally
coupled network, synchronizability on globally coupled networks is the same for various
node sequences. It is easy to calculate λmax(G[l, l]) = l−1.

Figure 4 shows the case of pinning synchronization in a globally coupled network
with 500 nodes. Obviously, the synchronizability is the strongest on globally coupled
networks.

4.2 Synchronizability on scale-free networks

Now, the relationship between maximum eigenvalue sequence of the principal sub-
matrices and the number of pinning nodes in a scale-free network is shown in three
strategies: (1) the high-degree pinning strategy, (2) the random pinning strategy and (3)
the low-degree pinning strategy.

A scale-free network with N = 500 is constructed using the Barabási–Albert model
with m0 = 5 starting nodes [25]. From figure 5, it can be found that the synchronizability
of the high-degree pinning strategy is the strongest when the number of pinning nodes is
less than 50% of the nodes, and the random pinning strategy is the next.

4.3 Synchronizability on small-world networks

We use the mean degree 8 and the remove probability 0.06 to construct a small-world
network with 500 nodes [1]. The evolution trend in a small-world network is similar to
the one in the scale-free networks in figure 6.

Remark

(1) From the simulations, different pinning strategies have different synchronizability
except globally coupled networks. Hence, it is important to select an appropriate
pinning strategy.

(2) We can find that synchronizability with pinning control is consistent with one with-
out pinning control on various complex networks. For example, synchronizability
on globally coupled networks is much stronger than the one in nearest-neighbour
coupled networks.

4.4 Simulation of the pinning synchronization

Next, let us verify the pinning synchronization scheme. The simulation example is on a
scale-free network by using the random pinning strategy, and dynamical system on each
node is the Lorenz system [26]. A scale-free network is constructed by using the parame-
ters in the above example. We calculate the number of pinning nodes using Hypothesis 1.
In fact, other systems such as Lü system [27], Chen system [28] and Chua’s circuit [29],
also satisfy Hypothesis 1.

The i th node Lorenz system is written as follows:
⎧
⎨

⎩

ẋi1 = a (xi2 − xi1)

ẋi2 = cxi1 − xi1xi3 − xi2

ẋi3 = xi1xi2 − bxi3

, 1 ≤ i ≤ 500, (17)

where a = 10, c = 30, b = 8/3, then the Lorenz system leads to chaos.

Pramana – J. Phys., Vol. 80, No. 4, April 2013 603



Yi Liang and Xingyuan Wang

It is known that |xi1| ≤ 29, |xi2| ≤ 29, −1 ≤ xi3 ≤ 57, |s1| ≤ 29, |s2| ≤ 29, −1 ≤
s3 ≤ 57 [30]. Let � = diag(1, 1, 1).

eT
i [f(xi ) − f(s)] = −ae2

i1 − e2
i2 − be2

i3 + (a + c − xi3)ei1ei2 + xi2ei1ei3

≤ −ae2
i1 − e2

i2 − be2
i3 + (a + c + 1) |ei1ei2| + 29 |ei1ei3|

≤
(
−a + 39ρ

2
+ 29η

2

)
e2

i1+
(
−1 + 39

2ρ

)
e2

i2+
(
−b + 29

2η

)
e2

i3.

Choosing ρ = 0.9810, η = 0.6730, then

eT
i [f (xi ) − f (s)] ≤ 18.888eT

i �ei . (18)
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Figure 7. Evolution trends of ei1, ei2, ei3 of error components, 1 ≤ i ≤ 500.
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Let ω = 18.888, σ = 20. In order to make λmax(G [l + 1, l + 1]) < −ω/σ =
−18.888/20, we get the first l = 57, i.e., if the number of pinning nodes is 57, the
scheme synchronizes.

By using Runge–Kutta, we choose initial values: s (0) = (4, 5, 6), xi1 = 4 + 0.1 × i ,
xi2 = 5 + 0.1 × i , xi3 = 6 + 0.1 × i ; di = 2, 1 ≤ i ≤ l. Figures 7a–7c show evolution
trends of errors for a scale-free network.

5. Conclusions

In this paper, synchronization on complex networks is investigated from the perspective
of pinning control. The pinning synchronization scheme is reviewed, and asymptotic
stability of synchronization solution is discussed. We find the decreasing law of maxi-
mum eigenvalue sequence of the principal submatrices for coupling matrix, and reveal
the relationship between maximum eigenvalue sequence of the principal submatriecs and
the number of pinning nodes. The decreasing speed of the maximum eigenvalue sequence
of the principal submatrices for coupling matrix is used to study the synchronizability on
some main complex networks. The results obtained are that different pinning strategies
have different synchronizabilities on the same complex network and the synchronizability
with pinning control is consistent with the one without pinning control in various complex
networks. For networks above, the synchronizability of scale-free and small-world net-
works has close relationship with specific pinning strategy. The synchronizability of the
high-degree pinning strategy is strongest in the three pinning strategies when the number
of pinning nodes is less than 50% of the nodes, and in general, the number of pinning
nodes account for a very small part of the total nodes when the pinning scheme is used.
Hence, the high-degree pinning strategy is better.
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