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Abstract. In this paper, we derive Lie point, generalized, master and time-dependent symmetries
of a dispersionless equation, which is an extension of a classical long wave system. This equation
also admits an infinite-dimensional Lie algebraic structure of Virasoro-type, as in the dispersive
integrable systems. We discuss the construction of a sequence of negative ranking symmetries
through the property of uniformity in rank. More interestingly, we obtain the conserved quantities
directly from the casimir of Poisson pencil.
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1. Introduction

In recent years, dispersionless equations attracted a lot of attention, because they naturally
appear in many physical problems [1–5]. Hence, it is very important to investigate various
integrability properties of this class of dispersionless equations. Among the dispersionless
equations, Benney system [1] is a ubiquitous one. This equation has strong physical
reasons and rich mathematical structures. Also, it is of recent interest to obtain many
integrable systems from Benney system under various reductions and the study of these
reduced systems also assumes significance [6,7]. It is well known that Benney system [1]

ut = uux + ghx − uy

∫ h

0
ux dy, ht =

(∫ h

0
u dy

)
x

, (1.1)

describes long waves on the surface of two-dimensional shallow incompressible fluid,
where u = u(x, y, t) is the horizontal component of velocity, h = h(x, t) is the free
surface over the flat bottom {y = 0}, x and y are the horizontal and vertical coordinates,
respectively, 0 ≤ y ≤ h, t is the (minus) time coordinate and g is the gravitational
constant. The subscripts of u and h with respect to x , y and t denote partial derivatives.
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For moments of u, An(x, t) = ∫ h
0 undy,∀ n ∈ Z≥0, the system (1.1) implies an

autonomous evolution equation,

An,t = An+1,x + gn An−1 A0,x , ∀ n ∈ Z≥0. (1.2)

The above infinite-component system is irreducible, i.e., there exist no finite-component
subsystems of (1.2). To overcome this difficulty, Kupershmidt [8] has extended the equa-
tions of motion of the Benney system from which one can obtain a finite subsystem of
(1.2) given by

An,t = 1

2
vn A1,x + 1

2
(n Anvx + (Anv)x ) + gn An−1 A0,x , ∀ n ∈ Z≥0,

vt = vvx + g A0,x , (1.3)

where v = v(x, t) = u(x, y, t) |h= u(x, h(x, t), t), is the velocity on the surface.
Consider a 3-by-3 subsystem of (1.3) for n = 0 and n = 1 and introducing the variable

transform E = (A1 − hv)1/2, we get [8]

vt = vvx + ghx , ht = (hv)x + E Ex , Et = 1

2
(vE)x . (1.4)

Note that, eq. (1.4) is the genuine extension of classical long wave system. By exhibiting
the bi-Hamiltonian structure for (1.4), Kupershmidt [8] has proved that (1.4) is integrable.

The paper is organized as follows. In §2, we study Lie point symmetry for (1.4) and
its various similarity reductions. In §3, we derive various symmetries of (1.4), including
generalized, master and time-dependant symmetries. Our analysis reveals a rich math-
ematical structure analogous to soliton equations for this systems as well. In §4, by
exploiting uniformity in rank approach, we present negative ranking generalized sym-
metries of (1.4). In §5, we construct casimir of Poisson pencil for (1.4), a closed form
formula to derive all conserved densities.

2. Lie point symmetries

Application of Lie symmetry analysis to integro-differential equations or infinite systems
of differential equations encounters difficulties in obtaining the overdetermined linear
equations for infinitesimal generators of symmetry group [9,10]. Therefore, one needs to
consider the local form of a system for our analysis. In this paper, we consider a 3-by-3
subsystem (1.4) which is a reduction of the extended equations of moments chain of
Benney system (1.3). Now, the reduced system is expressed in terms of local vari-
ables. This system shares many common properties with Benney system [8]. Using
this approach [9–12], we obtain a four-dimensional Lie algebra of symmetry vector fields
for (1.4),

V1 = ∂t ,

V2 = ∂x ,

V3 = −x∂x − 2t∂t + v∂v + 2h∂h + 3E

2
∂E ,

V4 = −10t∂x + 12∂v −
(

2v

g

)
∂h +

(
v2 − 4gh

Eg

)
∂E . (2.1)
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The non-vanishing commutators of (2.1) are

[V1, V3]=−2V2, [V1, V4]=−10V2, [V2, V3]=−V2, [V3, V4]=−V4.

Next, we consider the similarity reductions of (1.4) under various choices of vector
fields (2.1). Let us first consider the vector field V3 and the corresponding characteristic
equations can be written as

dx

−x
= dt

−2t
= dv

v
= dh

2h
= dE

3E/2
. (2.2)

From (2.2), we get the similarity variable and similarity functions

ζ = x√
t
, Ṽ (ζ ) = v

√
t, H̃(ζ ) = ht, Ẽ(ζ ) = Et3/4. (2.3)

Using the above transformations in (1.4), we get the similarity reduced equations

ζ Ṽζ + 2gH̃ζ + 2Ṽ Ṽζ + Ṽ = 0,

2Ẽ Ẽζ + 2(Ṽ H̃)ζ + 2H̃ + ζ H̃ζ = 0,

3Ẽ + 2ζ Ẽζ + 2(Ṽ Ẽ)ζ = 0. (2.4)

Next, we consider the linear combination of vector fields V1 and V4,

V = V1 + V4 = ∂t − 10t∂x + 12∂v − 2v

g
∂h +

(
v2 − 4gh

Eg

)
∂E . (2.5)

The corresponding similarity variable and similarity functions are given by

ζ = x + 5t2, Ṽ (ζ ) = v − 12t, H̃(ζ ) = gh + 12t2 + 2Ṽ (ζ )t,

Ẽ(ζ ) = gE2

2
− 64t3 − 16t2Ṽ (ζ ) − t Ṽ (ζ )2 + 4t H̃(ζ ), (2.6)

and the similarity reduced equations are

Ṽ Ṽζ + H̃ζ − 12 = 0,

2Ṽ + (Ṽ H̃)ζ + Ẽζ = 0,

Ṽ 2 − 4H̃ − 1

2
Ẽζ Ṽ − Ṽζ Ẽ = 0. (2.7)

It is important to note that (2.4) and (2.7) are not having the Painlevé property [13].

3. Generalized, master and time-dependant symmetries

The existence of infinitely many commuting generalized symmetries and bi-Hamiltonian
structures are important properties for integrable evolution equations [12,14,15]. The
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study of these along with master symmetries for dispersionless equations assumes signif-
icance. In this section, we briefly recall some basic facts. Using them, we derive new
results concerning the generalized, master and time-dependent symmetries.

Consider an evolution equation ut = K (u), where K (u) is a nonlinear function which
involves u and its derivatives. σ(u) is called a generalized symmetry if it satisfies the
linearized equation [11,12,14–16],

Dtσ = K ′(u)[σ ], (3.1)

where K ′ is the Fréchet derivative of K defined by

K ′(u)[σ ] = ∂

∂ε
K (u + εσ ) |ε=0 (3.2)

and Dt is the total derivative with respect to t . An operator valued function � is called a
recursion operator if

�′[K ] − K ′� + �K ′ = 0. (3.3)

For the given evolution equation if � is constructed then infinitely many generalized
symmetries follow from the recurrence relation,

Km+n = �n Km . (3.4)

The bi-Hamiltonian structure for (1.4) has been derived by Kupershmidt [8] with
Hamiltonian operators,

B1 =
⎛
⎜⎝

0 ∂ 0

∂ 0 0

0 0 1
2∂

⎞
⎟⎠ , B2 =

⎛
⎜⎝

2g∂ ∂v 0

v∂ h∂ + ∂h E∂

0 ∂ E 0

⎞
⎟⎠ . (3.5)

Now, the recursion operator [8,14–16] is defined in terms of B1 and B2 as

� = B2 B−1
1 . (3.6)

From eqs (3.5) and (3.6), we get

� =
⎛
⎜⎝

∂v∂−1 2g 0

h + ∂h∂−1 v 2E

∂ E∂−1 0 0

⎞
⎟⎠ , (3.7)

where

∂ = ∂

∂x
and ∂∂−1 = ∂−1∂ = 1.
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Using eq. (3.7), the first few generalized symmetries of (1.4) are listed as follows:

K0 =
⎛
⎜⎝

vx

hx

Ex

⎞
⎟⎠ , K1 =

⎛
⎜⎜⎝

vvx + ghx

(hv)x + E Ex

1

2
(vE)x

⎞
⎟⎟⎠ ,

K2 =

⎛
⎜⎜⎜⎜⎝

2gE Ex + 3g(vh)x + 3

2
v2vx

3ghhx + 3

2
(v2h)x + (E2v)x

g(hE)x + 1

2
(v2 E)x

⎞
⎟⎟⎟⎟⎠ . (3.8)

A vector field T (u) is called a master symmetry [16] of ut = K (u) if

[K , [K , T ]] = 0,

where the commutator of two vector fields is defined by

[A(u), B(u)] = A′[B] − B ′[A].
One can observe that the sequence of master symmetries Tn can be obtained by the action
of a recursion operator on seed symmetry T0 given by

T0 =
⎛
⎜⎝

xvx + v

xhx + 2h

x Ex + 3
2 E

⎞
⎟⎠ . (3.9)

The higher-order master symmetries can be obtained from the repeated action of the
recursion operator by the following rule:

Tn = �nT0, n ∈ Z≥0.

We give the first nontrivial master symmetry,

T1 =
⎛
⎜⎝

2xvvx + v2 + 2xghx + 4gh

2x(hv)x + 4hv + 2x E Ex + 3E2

(xvE)x

⎞
⎟⎠ .

From the above generalized and master symmetries, we found that the following algebraic
structure holds:

[K , T0] = 2K ,

�′[T0] + �[T ′
0] − T ′

0[�] = �, (3.10)

[Kn, Km] = 0,

[Km, Tn] = (1 + m)Kn+m,

[Tm, Tn] = (m − n)Tn+m, (3.11)
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for n, m ∈ Z≥0. From eq. (3.11), it is clear that system (1.4) constitute an infinite-
dimensional symmetry Lie algebra of the Virasoro-type [17]. In addition, it is possible to
define a time-dependent symmetry of (1.4) as

�n = (1 + n)t Kn + �nT0. (3.12)

4. Negative ranking symmetries

Having obtained Lie point and various symmetries of (1.4), in this section, we attempt
to explore further for the existence of other types of symmetries. It is well known that to
generate higher-order generalized symmetries one can use the recurrence relation (3.4). In
principle, the inverse of the recursion operator should generate non-local/negative ranking
generalized symmetries. But it is known that getting these negative ranking symmetries
using the recursion operator is quite difficult. On the other hand, getting negative ranking
generalized symmetries using uniform rank approach is straightforward. As a first step,
one needs to consider a set of monomials with uniform rank property [18,19]. Here, we
would like to emphasize that this investigation lead us to find a new sequence of negative
ranking generalized symmetries, which are expressed by local quantities. This may be
a property for dispersionless equations. It is worth recalling that in general, for soliton
systems negative ranking generalized symmetries used to be non-local. To determine the
rank for this class of generalized symmetries one needs to know the weights associated
with the independent and dependent variables. From the vector field V3, we arrive at the
following scaling transformation of (1.4):

(x, t, v, h, E) → (λ−1x, λ−2t, λ1v, λ2h, λ3/2 E). (4.1)

Assigning weights (denoted by ω) to the variables based on the exponents in λ and setting
ω(∂x ) = 1 (or equivalently, ω(x) = ω(∂−1

x ) = −1) gives ω(v) = 1, ω(h) = 2, ω(E) =
3
2 and ω(t) = −2 (or ω(∂t ) = 2). The rank of a monomial [18] is defined as the total
weight of the monomial and uniform rank of an equation is defined as having uniform
rank in each term of the equation.

Having these results, now we apply the uniform rank condition for finding generalized
symmetries. If K j is the generalized symmetry of (1.4), then the rank of the symmetry
for each component can be written as

(r (1), r (2), r (3))T ∼ (K (1)
j , K (2)

j , K (3)
j )T = K j ,

r (i) ∈ Q, i = 1, 2, 3, . . . , j = 0, 2, 3, . . . ,

where K (i)
j is the i th symmetry component and r (i)

j is the uniformity in rank of K (i)
j .
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Using the weights of various quantities defined earlier, one can easily obtain the ranks
of the sequence of generalized symmetries of (1.4). We list below the ranks corresponding
to the generalized symmetries:

(
2, 3,

5

2

)T

∼ K0,

(
3, 4,

7

2

)T

∼ K1,

...
...(

n + 2, n + 3, n + 5

2

)T

∼ Kn, ∀ n ∈ Z≥0. (4.2)

Clearly, the ranks of the generalized symmetries form strictly increasing sequence com-
ponentwise having positive values. However, it is interesting to obtain the symmetries
with negative ranks. The essential idea behind the construction of negative ranking sym-
metries is to look for a sequence of symmetries, of which the ranks form decreasing
sequence having negative values.

Based on the uniformity in rank, we consider the sets of elements in the field variables
and their derivatives. Due to the presence of rational rank for the generalized symmetries
in (4.2), we need to include rational form of monomials in order to derive negative ranking
generalized symmetry. Hence, consider all monomials component-wise with rank −1

2 , 1
2

and 0 as the rank of the starting negative ranking generalized symmetry. Thus, we define
the following sets of monomials:

R−1/2 =
{

h

vE
,

Ex

hx
,

Ex

E2
,

E

h
,

v

E
,

hE

vhx
,

E

vx
,
vE

hx
, ∂−1 E

v
, ∂−1 Ev

h
,

∂−1 Ex

h
, ∂−1 Ex

v2
, · · ·

}
,

R1/2 =
{

E

v
,

Ex

v2
,

Exv

E2
,

h

E
,
v2

E
,
vx

E
,

hv

Ex
,

E2

Ex
,

v3

Ex
,

Ev

h
, ∂−1 E,

∂−1 Ex

v
, ∂−1 vEx

h
, · · ·

}
,

R0 =
{

1,
v2

h
,

E2

hv
,

h

v2
,

Ex

Ev
,

Ev

Ex
,

Exv

hE
,

hE

Exv
,

v3

E2
,

Exv
2

E3
,

hx

E2
,

E3

Exv2
,

E2

hx
,
vvx

E2
,

Ex h

E3
, ∂−1v, ∂−1 h

v
, ∂−1 E2

h
, ∂−1 Ex

Ev
, · · ·

}
, (4.3)

where the subscripts of the sets indicate the ranks of elements in the concerned sets.
Let us construct S̃0 = (S̃(1)

0 , S̃(2)
0 , S̃(3)

0 )T , where S̃(1)
0 , S̃(2)

0 and S̃(3)
0 are the linear com-

bination of monomials from the sets R−1/2, R1/2 and R0 respectively. Substituting S̃0

in the symmetry condition (3.1) and K (u) from (1.4), we obtain a system of equations
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for the coefficients of constants. Solving them consistently, we finally get the generalized
symmetry

S̃0 =

⎛
⎜⎜⎝

S̃(1)
0

S̃(2)
0

S̃(3)
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− Ex

E2

Exv

2gE2
− vx

2gE

Ex h

E3
− Exv

2

4gE3
− hx

2E2
+ vvx

4E2g

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.4)

Repeating the same procedure for the sets R−3/2, R−1/2 and R−1, we get

S̃1 =

⎛
⎜⎜⎝

S̃(1)
1

S̃(2)
1

S̃(3)
1

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

fx

− Ex

2gE2
− 1

2g
(v f )x

vEx

2gE3
− vx

4gE2
+ v

4gE
(v f )x − h

2E
fx − 1

2E
(h f )x

⎞
⎟⎟⎟⎟⎟⎠

, (4.5)

where

f = 1

8gE3
(v2 − 4gh).

From the discussion above, it is clear that by considering the sets R−n−(1/2), R−n+(1/2)

and R−n , for n = 0, 1, 2, ..., we can derive a sequence of generalized symmetries {S̃n}∞
0

,
which are in negative ranks. It is surprising to note that eq. (1.4) admits negative ranking
generalized symmetries which are not involving non-local variables. But this is not the
case for soliton equations, where non-local terms appear especially in negative ranking
generalized symmetry.

5. Casimir of the Poisson pencil

In this section, our objective is to derive the conserved densities for eq. (1.4) through
casimir. Dubrovin and Novikov [20,21], introduced Poisson brackets for the study of
hydrodynamic equations:

{
ui (x), u j (y)

} = gi j [u(x)]δ′(x − y) + �
i j
k [u(x)]uk

x (x)δ(x − y) (5.1)

with the non-degeneracy condition det(gi j ) 
= 0. This equality defines a skew symmetri-
cal Poisson bracket on the functionals,

{I, J } =
∫

dx
δ I

δui (x)
Âi j

δ J

δu j (x)
, (5.2)

where

Âi j = gi j [u(x)] d

dx
+ �

i j
k [u(x)]uk

x (x) (5.3)
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is the so-called Hamiltonian operator (or) a Dubrovin–Novikov Hamiltonian operator
and we write gi j (u) as an arbitrary contravarient flat pseudo-Riemannian metric. Also,
�

i j
k [u(x)] = −gis�

j
sk , where �

j
sk is the Christoffel symbol of the Riemannian connec-

tion defined by the metric gi j (u). Moreover, for a bi-Hamiltonian structure, the two
Hamiltonian structures must be compatible, i.e., {., .} = {., .}1 − λ{., .}2 must be the
Hamiltonian structure for all values of λ. Here, {., .}1 and {., .}2 are two Poisson brackets
corresponding to B1 and B2.

From the Dubrovin–Novikov theorem [20], for two non-degenerate Hamiltonian oper-

ators Âi j
1 and Âi j

2 generated by the respective flat contravarient metrics gi j
1 (u) and gi j

2 (u),
the compatibility condition implies that for arbitrary λ,

(1) gi j (u) = gi j
1 (u) + λgi j

2 (u) is a metric of flat pencil.
(2) The metric connection for this metric has the form �

i j
k = �

i j
1k + λ�

i j
2k .

The bracket {., .}λ = {., .}1 − λ{., .}2 defines a linear pencil of Poisson brackets, used to
construct the casimir of Poisson pencil. Using eqs (3.5) and (5.1) we get

{v(x), v(y)}λ = 2gδ′(x − y),

{v(x), h(y)}λ = (v(x) − λ)δ′(x − y) + vx (x)δ(x − y),

{v(x), E(y)}λ = 0,

{h(x), v(y)}λ = (v(x) − λ)δ′(x − y),

{h(x), h(y)}λ = 2h(x)δ′(x − y) + hx (x)δ(x − y),

{h(x), E(y)}λ = E(x)δ′(x − y),

{E(x), h(y)}λ = E(x)δ′(x − y) + Ex (x)δ(x − y),

{E(x), E(y)}λ = −λ

2
δ′(x − y). (5.4)

If C(v, h, E, λ) is a casimir, then by using eq. (5.4), we find

{v(x), C}λ = 2g∂xCv + (v − λ)∂xCh + vxCh,

{h(x), C}λ = (v − λ)∂xCv + 2h∂xCh + hxCh + E∂xCE ,

{E(x), C}λ = E∂xCh + ExCh − λ

2
∂xCE . (5.5)

It is immediate from the definition of casmir, the right-hand side of eq. (5.5) must vanish

2g∂xCv + (v − λ)∂xCh + vxCh = 0, (5.6)

(v − λ)∂xCv + 2h∂xCh + hxCh + E∂xCE = 0, (5.7)

E∂xCh + ExCh − λ

2
∂xCE = 0. (5.8)
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Consider eq. (5.7) and rewriting we get

(v − λ) (Cvvvx + Cvhhx + CvE Ex ) + 2h (Cvhvx + Chhhx + ChE Ex )

+ E(CvEvx + ChE hx + CE E Ex ) + hxCh = 0. (5.9)

Collecting the coefficients of vx , hx and Ex in the above equation and equating them to
zero, we obtain

(v − λ)Cvv + 2hCvh + ECvE = 0, (5.10)

(v − λ)Cvh + 2hChh + EChE + Ch = 0, (5.11)

(v − λ)CvE + 2hChE + ECE E = 0. (5.12)

Solving the above equations consistently, we finally arrive at

C(v, h, E, λ)= 2ag − bλ

2g
v + cE + b

√
4gE2−λ[(λ−v)2−4gh]

gλ
, (5.13)

which is the casimir of the Poisson pencil with arbitrary integral constants a, b and c.
Expanding C(v, h, E, λ) by power series in λ, we obtain

C(v, h, E, λ) = − 1

2
(bv − 2gα) g−1λ + av + cE

− α(v + 2ghλ−1 + 2g(E2 + vh)λ−2

+ 2g(vE2 + v2h + gh2)λ−3

+ 2g(v2 E2 + 2gE2h + v3h + 3vgh2)λ−4

+ 2g(gE4 + v3 E2 + 6gE2vh + v4h

+ 6v2gh2 + 2g2h3)λ−5 + · · · ), (5.14)

where

α = b

√
− 1

g
.

Each coefficient of λ−1, λ−2, . . ., in eq. (5.14) gives conserved densities for the system
(1.4). We list the first few of them:

H0 = h,

H1 = E2 + vh,

H2 = vE2 + v2h + gh2,

H3 = v2 E2 + 2gE2h + v3h + 3vgh2,

H4 = gE4 + v3 E2 + 6gE2vh + v4h + 6v2gh2 + 2g2h3,

H5 = 3gE4v + v4 E2 + 12gE2v2h + v5h + 10v3gh2

+ 10vg2h3 + 6g2 E2h2. (5.15)

All the higher conserved densities can be easily derived from the casimir (5.15). In [8],
Kupershmidt has derived conserved densities using a different approach.
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6. Conclusions

In this paper, we have obtained a four-dimensional Lie group (2.1), admitted by the
extended classical long wave system (1.4) [8]. Similarity reductions (2.4) and (2.7) of
(1.4) under various choices of vector fields do not possess the Painlevé property [13]. Sys-
tem (1.4) also exhibits Virasoro Lie algebraic structure (3.11), through the construction of
generalized, master and time-dependent symmetries. Furthermore, negative ranking gen-
eralized symmetries (4.4) and (4.5) of (1.4) do not contain non-local field variable whereas
in soliton system they do have. These symmetries have been found by using the property
of uniformity in rank [18,19]. Using Dubrovin and Novikov Poisson bracket [20,21], a
simple and closed form of expression for casimir is obtained. From the casimir, we have
derived conserved quantities of (1.4) straightforwardly. Similar analysis for higher com-
ponent subsystem of (1.3) will be interesting. We shall report the results in our future
publication.
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