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Abstract. Ab initio detailed calculations of the elastic properties of AgClx Br1−x alloys were
recently made using density-functional perturbation theory and by employing the virtual crystal
approximation or by means of the full potential linearized augmented plane wave method. Here, we
suggest a simple theoretical model that enables estimation of isothermal compressibility of these
alloys in terms of the elastic data of end-members alone. The calculated values are in satisfac-
tory agreement with the experimental ones. The present model makes use of an early suggestion
that interconnects Gibbs energy for the formation and/or migration of defects in solids with bulk
properties.
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1. Introduction

Silver halides exhibit interesting properties compared to the alkali halides, such as lower
melting point and higher ionic conductivity. Silver halides are very important as they can
be used as photographic materials, solid electrolytes and liquid semiconductors (e.g., see
refs [1–5]). Although they all have the same NaCl structure, as the alkali halides, we
emphasize that the elastic properties of the silver halides cannot be explained with the
simple theories that successfully describe the elastic properties of the alkali halides [6].

Many experimental [6–12] and theoretical [13] studies have been carried out to under-
stand the structural and elastic properties, phase transformation at high pressure, and
lattice dynamics of AgBr, AgCl and AgBr1−x Clx ternary alloys. For example, recently,
Endou et al [1] have measured the temperature dependence of the elastic constants in
silver halide crystals, above room temperature, by using the resonant ultrasound spec-
troscopy method [14]. As a second example, we refer to ref. [15], in which the
elastic properties and lattice dynamics of AgBr1−x Clx were studied as a function of the
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composition (x) in the NaCl (B1) phase, by using the density-functional perturbation the-
ory and employing the virtual-crystal approximation. Thirdly, Amrani et al [2], in order
to understand and control the alloy system between AgCl and AgBr and behaviour of
bowing and related properties, have investigated the effect of Cl concentration on the
structural and electronic properties of AgClx Br1−x alloys, with Cl content between 0 and
1, using the full potential-linearized augmented plane wave method. The effect of compo-
sition on bulk modulus was investigated. This property was found to depend nonlinearly
on the alloy composition x .

The question arises whether one can determine the values of bulk modulus of a
AgClx Br1−x mixed system, solely in terms of the elastic data of the end members AgBr
and AgCl. This paper aims to answer this question. We employ here a simple model, that
has been also recently [16] used for calculating the compressibility of multiphased mixed
alkali halide crystals grown by the melt method [17] using miscible alkali halides, i.e.,
NaBr and KCl, which have a simple cubic space lattice of the NaCl-type and measured
in a detailed experimental study by Padma and Mahadevan [17]. This model was also
successfully applied [18] to the mixed crystal NH4Cl1−x Brx considering that NH4Cl and
NH4Br have a simple cubic space lattice structure of the CsCl-type. In this paper, we
report the remarkable finding that this simple model produces in the case of AgClx Br1−x

alloys equally successful results as in the mixed alkali halides and mixed ammonium
halides despite the aforementioned significant differences in their physical properties and
especially the lack [6] of a unified explanation with simple theories of the elastic prop-
erties of silver halides and alkali halides, as mentioned above. We emphasize, however,
that the procedure through which this simple model is applied here to AgClx Br1−x dif-
fers essentially from the one followed for its application to mixed alkali and ammonium
halides as explained in the last paragraph of the next section.

2. Method

We first recapitulate the model that explains how the compressibility κ(= 1/B) of a
mixed system AxB1−x can be determined in terms of the compressibilities of the two
end members A and B. Let us call the two end members A and B as pure components (1)
and (2), respectively and label υ1 the volume per ‘molecule’ of the pure component (1)
(assumed to be the major component in the aforementioned mixed system Ax B1−x ), υ2

the volume per ‘molecule’ of the pure component (2). Furthermore, let V1 and V2 denote
the corresponding molar volumes, i.e. V1 = Nυ1 and V2 = Nυ2 (where N stands for
Avogadro’s number) and assume that υ1 < υ2. Defining a ‘defect volume’ [19] υd

2,1 as the
increase in the volume V1, if one ‘molecule’ of type (1) is replaced by one ‘molecule’ of
type (2), it is evident that the addition of one ‘molecule’ of type (2) to a crystal containing
N ‘molecules’ of type (1) will increase its volume by υd

2,1 + υ1 (see Chapter 12 of ref.
[19] as well as ref. [20]). Assuming that υd

2,1 is independent of composition, the volume
VN+n of a crystal containing N ‘molecules’ of type (1) and n ‘molecules’ of type (2) can
be written as

VN+n = Nυ + n(υd
2,1 + υ1) or VN+n =

[
1 +

( n

N

)]
V1 + nυd

2,1. (1)
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The compressibility κ of the mixed crystal can be found by differentiating eq. (1) with
respect to pressure which gives:

κVN+n =
[
1 +

( n

N

)]
κ1V1 + nκd

2,1υ
d
2,1

or

κVN+n = κ1V1 +
( n

N

) [
κd

2,1 Nυd
2,1 + κ1V1

]
, (2)

where κd
2,1 denotes the compressibility of the volume υd

2,1, defined as

κd
2,1 ≡ −

(
1

υd
2,1

)
×

(
dυd

2,1

dP

)

T

.

Within the approximation of the hard-spheres model, the ‘defect–volume’ υd
2,1 can be

estimated from

υd
2,1 = (V2 − V1)

N
or υd

2,1 = υ2 − υ1. (3)

Thus, since VN+n can be determined from eq. (1) (upon considering eq. (3)), the com-
pressibility κ can be found from eq. (2) if a procedure for estimating κd

2,1 is employed.
In this direction, we adopt a thermodynamical model for the formation and migration of
defects in solids described below which has been of value in various categories of solids
including [21–26] metals, ionic crystals, rare gas solids, etc. as well as in high Tc super-
conductors [27] and in complex ionic materials under uniaxial stress [28] that emit electric
signals before fracture, in a similar fashion with the signals observed [29,30] before the
occurrence of major earthquakes.

According to the latter thermodynamical model, the defect Gibbs energy gi is inter-
connected with the bulk properties of the solid through the relation gi = ci B� (usually
called cB� model), where B is the isothermal bulk modulus (=1/κ), � is the mean vol-
ume per atom and ci is a dimensionless quantity. (The superscript i refers to the defect
process under consideration, e.g. defect formation, defect migration and self-diffusion
activation). By differentiating this relation with respect to pressure P, we find defect vol-
ume υ i [= (dgi/dP)T]. The compressibility κd,i defined by κd,i [≡ −(d �n υ i/dP)T], is
given by [22,23]

κd,i = 1

B

− (
d2 B/dP2

)

(dB/dP)T−1
. (4)

This relation states that the compressibility κd,i does not depend on the type i of the
defect process. Thus, it is reasonable to assume now that the validity of eq. (4) holds also
for the compressibility κd

2,1 involved in eq. (2), i.e.,

κd
2,1 = κ1

− (
d2 B1/dP2

)

(dB1/dP)T−1
, (5)

where the subscript 1 in the quantities at the right side refers to the pure component (1).
The quantities dB1/dP and d2 B1/dP2, when they are not experimentally accessible, can
be estimated from the modified Born model according to [19,20]:

dB1

dP
= (nB + 7)/3 and B1

(
d2 B1

dP2

)
= −

(
4

9

) (
nB + 3

)
, (6)
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where nB is the usual Born exponent. This is the procedure that has been successfully
applied in ref. [16] for the multiphased mixed alkali crystals, as well as in mixed ammo-
nium halides [18]. Attention is drawn, however, to cases like AgClx Br1−x where the Born
model does not provide an adequate description [6], as does for alkali halides. Thus,
here, in the case of AgClx Br1−x , we shall solely rely on eq. (4), but not on eq. (6). In
other words, our earlier publications [16,18] dealt either with mixed alkali halides or with
ammonium halides, we calculated the first and second pressure derivatives of the bulk
modulus on the basis of eq. (6) – obtained from the modified Born model – and then
inserted it into eq. (4). On the other hand, in the present case of AgClx Br1−x , we do
not use the modified Born model at all, but we insert it into eq. (4), the first and second
pressure derivatives of the bulk modulus deduced from the elastic data of AgBr under
pressure using a least squares fit to a second-order Murnaghan equation as described in
the next section.

3. Results

Let us apply this procedure to the mixed system: AgBr–AgCl. In this application, we
shall intentionally take AgBr (1) as starting material (V1 = 28.996 cm3/mol) and by
considering that for the pure AgCl (2), the volume is V2 = 25.731 cm3/mol, one gets
Nυd = V2 − V1 = −3.265 cm3. We now consider the adiabatic values measured for
various compositions in ref. [6] and transform them to the isothermal ones with the stan-
dard thermodynamical procedure described in ref. [19]. Using these isothermal κ-values,
for various compositions x , we actually find that κVN+n versus n/N is a straight line the
slope of which, according to eq. (2), is κd

2,1κ
d
2,1(Nυd) + κ1 (AgBr) V1 (AgBr) = 63.99×

10−2 cm3 GPa−1. By inserting the υd -value, we find κd
2,1 = 3.947 × 10−2 GPa−1. Note

that, the κd
2,1-value is appreciably higher than the compressibility of AgBr (κ1 = 2.645

× 10−2 GPa−1) and AgCl (κ2 = 2.398 × 10−2 GPa−1), as expected from thermodynamic
arguments forwarded in ref. [19].

We now proceed to the calculation of κd
2,1 on the basis of eq. (5), by using the elastic

data under pressure [31], which are well-described if the expansion of the isothermal bulk
modulus is carried out to second order, i.e.,

−
(

∂ P

∂ ln V

)
= B(P) = B0 + dB0

dP

∣∣∣∣
T

P + 1

2

d2 B0

dP2

∣∣∣∣
T

P2,

the investigation of which yields a second-order Murnaghan equation (the subscript
0 corresponds to values close to zero pressure). The resulting expression for the bulk
modulus of AgBr was found to be [31]: B(P) = 377.7 + 7.49P − 1

2 (0.0287)P2, where
B and P are in kilobars. Thus

dB

dP

∣∣∣∣
T

= 7.49 and
d2 B

dP2

∣∣∣∣
T

= −0.0287.

By inserting these values into eq. (5), we find κd
2,1 = 7.06 × 10−2 GPa−1, with

κ1 = 2.645 × 10−2 GPa−1, the isothermal compressibility for AgBr [18].
From eq. (1) we calculate the volume VN+n for each concentration of the mixed crystals

and from eq. (2), the values of the isothermal bulk modulus. All the calculated values for
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Figure 1. The asterisks and the crosses mark the theoretical and the experimental
values of the isothermal bulk modulus (broken lines). The latter are obtained from the
adiabatic values measured in ref. [6] after transforming them to the isothermal ones
by means of the standard thermodynamical manner (see ref. [19]). We also plot for
the adiabatic bulk modulus, the theoretical (solid circles from ref. [2], open reverse
triangles from ref. [15] and open squares from the simple model presented here) along
with experimental values [6] (solid triangles).

the isothermal bulk modulus are depicted with asterisks in figure 1, where they are plotted
vs. the composition (x). In the same figure, we also insert with crosses, the experimental
values deduced from the adiabatic values measured in ref. [6] and transformed to the
isothermal ones by the standard thermodynamical procedure [19], as already mentioned.

We now turn to the values of the adiabatic bulk modulus. The theoretical values cal-
culated in refs [2] and [15] are plotted in figure 1 with solid circles and open reverse
triangles, respectively. We also insert with open squares, the values calculated by the
aforementioned simple thermodynamical model, where we followed the same procedure
as above, but by considering the adiabatic values instead of the isothermal ones. In the
same plot, we also show with solid triangles, the experimental adiabatic values of the bulk
modulus as reported in ref. [6]. An inspection of these values reveals that there exists a
disparity between the values calculated in refs [2] and [15]. Furthermore, we see that the
values resulted from the simple model discussed here lie between those calculated in refs
[2] and [15].

4. Conclusions

Here, we made use of the key concept that the volume variation produced by adding a
‘foreign molecule’ to a host crystal can be considered as a defect volume. Then, the
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compressibility κd
2,1 of this defect volume was calculated on the basis of an early thermo-

dynamical model, which interconnects the defects of Gibbs energy with bulk properties.
This method enables the estimation of the isothermal compressibility of the rock-salt
AgClx Br1−x alloys in terms of the elastic data of the pure constituents (i.e., AgBr and
AgCl). In the composition range for which experimental data are available, the calcu-
lated values of the isothermal compressibility of these alloys are in reasonable agreement
with the experimental ones. If we consider the adiabatic compressibility of these alloys,
instead of the isothermal one, the values obtained by the present model lie between those
resulted from the microscopic calculations carried out by other authors [2,15].
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