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Abstract. The electronic structures of hexagonal-close-packed divalent titanium (3-d) and zirco-
nium (4-d) transition metals are studied by using a non-local model potential method. From the
present calculation of energy bands, Fermi energy, density of states and the electronic heat capacity
of these two metals are determined and compared with the existing results in the literature.
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1. Introduction

The transition metals, titanium (Z = 22) and zirconium (Z = 40), which are in the
same column of periodic table, crystallize in the hexagonal-close-packed (hcp) struc-
ture. The hcp structure is very common among the metals and the two atoms per
unit cell gives an electronic structure which is more complex than that of the cubic
metals. Quite a few theoretical calculations of the electronic structure of these metals have
been done by cellular [1], augmented plane wave (APW) [2–5], linear muffin-tin orbital
(LMTO) [6–8], non-relativistic APW [9], linearized augmented-plane-wave (LAPW) [10]
and full-potential-augmented-plane-wave (FPAW) [11] methods. In addition to these, cal-
culations are available where first principles density functional theory is used. However,
the pseudopotential method [12] is relatively simple and is reasonably good for study-
ing electronic properties of solids [13–18], especially of simple metals. For alkali and
noble metals, pseudopotential does not deviate much from that of a free electron-like
system [19]. On the other hand, for the transition metal, the choice of a model potential
is generally found more reliable. In the pseudopotential procedure [20], the pseudowave-
functions are solved in the standard energy band calculations using pseudopotential. It is
well known [12] that in the free electron-like solids, the pseudowave function resembles
very closely the true wave function in the interatomic region. The model potential param-
eters are determined by fitting with experimental data. It is also known that a non-local
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model potential describes the system better than a local model potential. In the calcu-
lation of Oli [21] using transition metal model potential of Heine–Abarenkov type, the
density of states (G) and the electronic heat capacity (γ ) for titanium and zirconium are
not reported. The purpose of the present calculation is therefore to determine G and γ for
these two metals. Ti and Zr which crystallize in hcp structure have the axial ratio of 1.59
(for ideal hcp, the ratio is 1.633). Energy band calculations are carried out using a model
potential [22]. In order to test how good the present work is, a number of band structure-
dependent properties, such as, the shape of the bands, the Fermi energy, G and γ are
determined and compared with those available from experiment and other calculations.

The paper is divided into four sections. In §2, the theory is briefly outlined. Results
and discussion are presented in §3. Conclusion is given in §4.

2. Theory

Ti and Zr have hcp structure at room temperature and at ambient pressure. At high
pressure, and at room temperature, the hcp phase transforms to a more complex open
hexagonal phase [9]. At high temperature, they exhibit body centred cubic (bcc) structure
[8]. The most acceptable structure for Ti and Zr corresponding to the respective atomic
configuration (3d2, 4s2), (4d2, 5s2) are usually chosen. The lattice constants [5,6] are
tabulated in table 1. The unit cell which contains two atoms is displayed in figure 1.
The c/a ratio is weakly volume-dependent in Ti but strongly dependent [10] in Zr. The
Brillouin zone (BZ) is a hexagonal prism and has 24 equivalent parts connected to each
other by the elements of the point-group D6h . The irreducible part of the BZ is dis-
played in figure 2. The basic dimension (in au−1) of BZ for Ti and Zr are taken from
refs [2,19].

In the present work, the model potential method for energy band calculation [23] is
used to determine the band energies and wave functions. In determining the energy and
eigenfunctions of the conduction electrons, the Schroedinger equation,

Hm|χt (�g)〉 = Et (�g)|χt (�g)〉, (1)

has been solved by quantum mechanical variational procedure. Hm is the model
Hamiltonian, |χt (�g)〉 is the model wave function and Et is the energy of the t th band
at the �g point in the BZ. In the atomic unit (e2 = 2, m = 1/2 and h̄ = 1), the model
Hamiltonian H is expressed as

H = −∇2 + Vm, (2)

Table 1. Lattice constants of Ti and Zr.

Transition metal Lattice parameter in atomic unit (au)

(refs [5,6]) a b c c/a

Ti 5.5754 5.5754 8.8502 1.59
Zr 6.106 6.106 9.728 1.59
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Figure 1. Unit cell of the hcp lattice in direct space indicating the position of
two atoms.

where Vm is the model potential. This potential depends on the atomic volume through
the energy parameters E [14]. The model potential reported by Animalu [22] is used in
the present calculation. Model potential V (q) is plotted in figure 3.

In variational procedure, the model wave function is expanded in a basis of plane wave,

|χt (�g)〉 =
∑

�K
Ct (�g, �K )

∣∣PW(�g + �K )
〉
, (3)
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Figure 2. Irreducible part of the Brillouin zone of the hcp lattice.

Pramana – J. Phys., Vol. 79, No. 2, August 2012 329



B P Panda

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.0 1.0 2.0 3.0 4.0 5.0
q

V
(q

)

Figure 3. Variation of Fourier transform of model potential for Ti and Zr. The solid
lines labelled by symbols + and ◦ represent Ti and Zr respectively.

where �g is the wave vector in the reduced BZ, �K is the reciprocal lattice vector, Ct s are
the coefficients of linear combination and |PW(�g + �K )〉 is the plane wave basis vector. In
the coordinate representation, the normalized plane wave is given by

PW (�g, �r) = 1√
N�

ei �g.�r , (4)

where N is the number of atoms in the solid and � is the volume per atom.
The energies Et(�g) and the coefficients Ct (�g, �K ) are determined as a solution of the

secular equation,
∣∣H�g+ �K ,�g+ �K ′ − Et (�g) δ �K �K ′

∣∣ = 0. (5)

The size of the determinant is determined by the number of plane waves used in eq. (3)
for the expression of |χt (�g)〉. This number is decided by the criterion of the convergence
of energy and wave function. When the coefficients Ct (�g, �K ) are obtained, the model
wave function χt (�g) is completely determined. The true wave function ψt (�g) is deter-
mined by orthogonalizing the model wave function to all the core states. Once the band
energies Et (�g) are determined at the �g points of BZ, the Fermi energy EF is calculated
by filling the band states from the lowest band energy upto which all the electrons in the
solid are accommodated. The density of state (G = ∂ℵ/∂ E where ℵ is the number of
states at energy E) is determined for both occupied and unoccupied band states. The elec-
tron heat capacity (γ ) which is related to the density of states at EF is calculated using
the formula [24],

γ = 1

3
π2k2

B N0Gcell(EF), (6)

where N0(= N/2 for Ti and Zr) is the number of cells, kB is the Boltzmann’s constant
and Gcell(EF) = G(EF)/N0 is the single cell contribution to the density of state at Fermi
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energy. The latter is determined numerically using the energy of bands obtained in the
present calculation.

3. Results and discussions

For selecting the representative �g points, the wedge-shaped 1
24 th irreducible part of the BZ

is divided into 6 parts by slicing it by equidistant planes perpendicular to C-axis. Each
one of the six prisms is further divided into 64 sub-prisms of equal volume. In this way
the irreducible part of BZ is divided into 384 sub-prisms. The centroid of each sub-prism
is chosen as the �g-point. To each �g point so chosen, a weighting factor in proportion to the
volume it represents is assigned. The weighting factors are equal to 1/(24×384). Thus
the effective numbers of �g points are 9216 in the complete BZ. Energy and eigenfunctions
are calculated at each of these �g points. The model wave function is expanded in 23 plane
waves corresponding to the shortest 23 wave vectors |�g + �K |. Thus, the size of the matrix
at each �g-point is 23×23. With this choice, the convergence of energy and eigenfunction
is good. The energies of the occupied bands have converged to within 0.001 Ryd for
both Ti and Zr. The band structures at the symmetry points are plotted for Ti and Zr in
figures 4 and 5 respectively. The shapes of the band for Ti are compared with the other
results [1,4,6]. Here the band structures are more or less similar to those from other band
calculations [6]. Similarly, the shape of the band for Zr is compared with other results
[1,5,7]. Here also the band structures are more or less similar to those from other energy
band calculations [5]. The present results, however, differ substantially from those of
Altmann and Bradley [1], Jepson [6,7], Loucks [5] as the energy bands are extremely
sensitive to the choice of potential [5,25]. In the present method, the bands for Ti and
Zr are very similar but there is an increase in bandwidth from Zr to Ti. The band struc-
tures obtained by LAPW method [10] using Hedin–Lundqvist form (HL), the exchange
correlation potential, are identical with this method.

Figure 4. Energy bands for Ti along symmetry directions.
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Figure 5. Energy bands for Zr along symmetry directions.

The density of state for Ti is plotted in figure 6 and for Zr in figure 7. The results EF,
G(EF), the density of states at EF and γ (EF), the electronic heat capacity at EF from the
present calculation, other calculations and experiment, wherever available, are listed in
tables 2 and 3 for Ti and Zr respectively. From these tables it is found that in the present
method while EF increases with bandwidth, both G and γ decrease. The variation of
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Figure 6. Density of states for Ti.
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Figure 7. Density of states for Zr.

density of states with energy in the present calculation is very similar to those given by
Jepson [6,7]. From tables 2 and 3, it is found that the ratio of (γ /G)exp. for Ti is 0.23
while for Zr it is 0.22. In the present method, on the other hand, (γ /G)Theory for Ti and
Zr is 0.17 which is the same as measured in earlier methods [1,2,5–7,9] and obtained for
free-electron case. In the present work, as the density of states at EF in Zr is higher than
that in Ti, the electronic heat capacity of Zr is larger than that of Ti. The ratio γ(Ti)/γ(Zr)

from the experiment is about 1.2. The ratio of the theoretical value to the present work is
about 0.884 which is very close to the value from the relastivistic APW method. While the

Table 2. EF, the Fermi energy, G(EF), the density of states at EF, γ , the electronic
heat capacity, γexp., the experimental heat capacity and γTheory, the theoretical elec-
tronic heat capacity in Ti from different calculations and experiment. EF is expressed
in Rydberg, G(EF) in number of states/cell/Rydberg and γ in mJ/mole/K2.

Present Free-electron Expt.
Parameters result Ref. [1] Ref. [2] Ref. [6] Ref. [9] result (refs [1,6])

EF 0.65 0.30 0.33 0.67 0.31 0.99 Not available
G(EF) 12.88 38.60 28.50 12.40 14.80 12.04 14.40
γ (EF) 2.23 6.78 4.94 2.15 2.56 2.08 3.32
(γ /G) 0.17 0.17 0.17 0.17 0.17 0.17 0.231
(γexp.)/ 1.49 0.49 0.67 1.54 1.29 1.59

(γ Theory)
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Table 3. EF, the Fermi-energy, G(EF), the density of states at EF, γ , the electronic
heat capacity, γexp., the experimental heat capacity and γTheory, the theoretical elec-
tronic heat capacity in Zr from different calculations and experiment. EF is expressed
in Rydberg, G(EF) in number of states/cell/Rydberg and γ in mJ/mole/K2.

Present Free-electron Expt.
Parameters result Ref. [1] Ref. [5] Ref. [7] Ref. [9] result (refs [1,7])

EF 0.51 0.40 0.39 0.60 0.31 0.83 Not available
G(EF) 14.58 10.30 9.10 13.10 13.70 14.48 12.70
γ (EF) 2.52 1.80 1.59 2.27 2.37 2.51 2.78
(γ /G) 0.17 0.17 0.17 0.17 0.17 0.17 0.22
(γexp.)/ 1.10 1.54 1.75 1.22 1.17 1.11

(γTheory)

ratio of γexpt. to γtheory for Ti is 1.48878, it is 1.10317 for Zr. This indicates an electron–
phonon enhancement factor of about 1.5 for Ti and 1.1 for Zr, which is very reasonable
as measured by Loucks [5]. It is found from the theoretical calculation that G and γ at
EF increase from Ti to Zr, while EF decreases and this behaviour is not reflected by other
methods except LMTO method.

4. Conclusions

Energy bands, Fermi energy, density of states and electronic heat capacity in the transition
metals Ti and Zr are calculated using non-local model potential method. The results,
particularly, the density of states at Fermi energy and the electronic heat capacity are
found in reasonable agreement with the experiment. The difference between these results
and experiment may be ascribed partly to contribution from phonons. Considering the
relatively simple nature of the procedure and reasonably good accuracy of the results
it produces, I conclude that this method may be applied with confidence to study other
electronic properties such as electric field gradient in these metals.
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