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Abstract. Fluorescence characteristics of human breast tissues are investigated through
wavelet transform and principal component analysis (PCA). Wavelet transform of polar-
ized fluorescence spectra of human breast tissues is found to localize spectral features
that can reliably differentiate different tissue types. The emission range in the visible
wavelength regime of 500–700 nm is analysed, with the excitation wavelength at 488 nm
using laser as an excitation source, where flavin and porphyrin are some of the active
fluorophores. A number of global and local parameters from principal component analysis
of both high- and low-pass coefficients extracted in the wavelet domain, capturing spectral
variations and subtle changes in the diseased tissues are clearly identifiable.
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1. Introduction

Optical diagnostic techniques such as fluorescence, Raman, and light scattering are
viable tools for tumor detection. Amongst these methods, fluorescence technique is
one of the most widely used method in light-based diagnostic systems. Biological
tissue is a turbid medium. The fluorescence from such a medium is affected by
scattering and absorption. Due to its sensitivity to minute variations, fluorescence
spectroscopy can provide quantitative biochemical information about the state of
the tissue, which may not be obtained by using standard pathology. Fluorophores,
such as flavin, nucleotides (NADH), tryptophan, tyrosine, elastin, collagen etc.,
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having excitation frequencies in UV and visible regimes, have been used as mark-
ers. Flavins are intrinsic fluorophores, which fluoresce in the higher wavelength
visible region when excited by lower wavelength visible light. Fluorescence emis-
sion can differ significantly in normal, benign and cancerous tissues due to the
differences in concentration of absorbers and scatterers and also the size of the
scatterers. The absorption in the visible range occurs primarily due to the presence
of blood, whose amounts vary in various tissue types. The presence of scatterers
leads to randomization of light, thereby generating a depolarized component in the
fluorescence spectra. Decrease in fluorescence intensity due to absorption by blood
is thus a signature of early tumor growth. Amount of flavin (FAD) increases in
cancer tissues compared to normal tissues.

As pre-cancerous tissue develops into cancerous one, porphyrin increases. Por-
phyrins have drawn immense attention because of their role in the human body,
ability to accumulate in many kinds of cancer cells, as well as their magnetic and
optical properties. These features make them useful in cancer therapy [1].

The tissue samples were excited with 488 nm wavelength plane polarized light
from an Ar-ion laser (Spectra physics 165,5w) and keeping the excitation polarizer
horizontal, fluorescence was recorded with the emission polarizer in both the parallel
(‖) and vertical (⊥) positions to obtain the parallel and perpendicular components
respectively for 500–700 nm wavelength range. The polarized fluorescence spectra
were collected in right angle geometry using triplemate monochromator (SPEX-
1877E) and PMT (RCA C-31034). The laser spot was around 1 mm.

2. Wavelet transform

Any finite energy signal f(t) ∈ L2(R) can be expanded as

f(t) =
∞∑

k=−∞
ckφk(t) +

∞∑

k=−∞

∞∑

j=0

dj,kψj,k(t), (1)

where ck and dj,k are the wavelet transforms of the signal f(t) and known as low-
pass and high-pass coefficients respectively. The low-pass coefficients at various
levels represent average behaviour of the data over the corresponding window sizes,
whereas high-pass coefficients represent differences around the location k, over a
window size which depends on level j.

Using multiresolution analysis one can show that

cj,k =
∑

n

h(n− 2k)cj+1,n (2)

and

dj,k =
∑

n

h̃(n− 2k)cj+1,n. (3)

Here h(n) is the low-pass filter and the corresponding one for the high-pass coeffi-
cients is the high-pass filter.
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Figure 1. (a) Standard deviation of percentage fluctuation (of difference of
intensities of parallel and perpendicular components) and (b) low-pass power.

Wavelet transform satisfies the Parseval theorem

P ≡
∑

I2
i =

∑
c2
k +

∑

j,k

d2
j,k, (4)

where Ii are the intensity values.
We used wavelet transform to isolate the variations at different scales in different

tissue types. Because of its multiresolution and localization properties, this linear
transform was ideally suited for disentangling variations at different scales.

First we employed discrete wavelet transform on the signal and then computed
the standard deviation of the percentage fluctuations, i.e., the high-pass coefficients
divided by their corresponding low-pass coefficients for statistical analysis shown
in the scatter plot (figure 1a). Standard deviation of normal tissue is dominantly
greater than that of cancer tissues. This confirms that randomization of fluctuations
is more in malignant tumor due to larger number of cells, and the spectrum is more
densely packed compared to the normal tissue spectra.

Then we computed low-pass powers (figure 1b) at different levels which consis-
tently differed between tissue types. The power at different levels captured the
variance at that level. Normalized low-pass powers of cancerous tissues decreased
more slowly as a function of levels.

Earlier, it was found that perpendicular component was the best discriminator,
so we have concentrated on the parameters of this component [2].

3. Correlation matrix

We have computed δIi(k) through mean subtraction of the low-pass coefficients Ii

to construct the correlation matrix C [3]

C = (AT A)/N, (5)
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Figure 2. Correlation matrices of low-pass level-1 and level-2 wavelet coeffi-
cients for the (a), (b) cancer and (c), (d) normal tissues showing in the case
of cancer highly correlated domains to higher wavelength.

where AT
ik = δIi(k), is a m× n rectangular matrix. The δIs have been normalized

to have unit variance. N is the normalization factor.
Here i = 1–96 low-pass coefficients of level-1 correspond to the original intensity

values 192 (for the wavelength range 500–691 nm), i = 1–48 low-pass coefficients
for level-2 and k = 23 corresponds to tissue sample number.

The nature of correlations, as seen through different sized domains, are clearly
different for cancer and normal low-pass coefficients of level-2 (figure 2). It is also
clear from the entries of eigenvalues corresponding to second dominant eigenvector
that both the tissues show opposite activities (figure 3).

Figure 4 depicts high-pass coefficients which differ significantly in cancer and
normal tissues, at low level.

4. Conclusion

In conclusion, the systematic separation of variations at different wavelength scales
from the broad spectral features pinpoints several quantifiable parameters to dis-
tinguish cancer and normal tissues. These distinguishable features are related to
biochemical and morphological changes. The spectral profiles of the diseased and
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Figure 3. Entries of eigenvectors corresponding to the first two highest eigen-
values for (a), (b) level-1 and (c), (d) level-2 low-pass coefficients of cancer
and normal tissues.
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Figure 4. Histogram of the normalized high-pass coefficient for (a) cancer
and (b) normal tissues at level-1.

the non-diseased tissues behave very differently, which manifest in the difference of
the low-pass power profiles.

Low level high-pass coefficients differ significantly between cancer and normal
tissues. Fluctuation characteristics of breast cancer tissues are quite different from
normal tissues captured by smaller principal component.
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