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Abstract. Transitions to universality classes of random matrix ensembles have been
useful in the study of weakly-broken symmetries in quantum chaotic systems. Transitions
involving Poisson as the initial ensemble have been particularly interesting. The exact
two-point correlation function was derived by one of the present authors for the Poisson
to circular unitary ensemble (CUE) transition with uniform initial density. This is given
in terms of a rescaled symmetry breaking parameter Λ. The same result was obtained for
Poisson to Gaussian unitary ensemble (GUE) transition by Kunz and Shapiro, using the
contour-integral method of Brezin and Hikami. We show that their method is applicable to
Poisson to CUE transition with arbitrary initial density. Their method is also applicable
to the more general `CUE to CUE transition where `CUE refers to the superposition of `
independent CUE spectra in arbitrary ratio.
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1. Introduction

Random matrix theory (RMT) has been useful in the statistical study of the spectra
of complex quantum systems [1–5]. Its applications cover a wide range of systems,
e.g., quantum chaotic systems, mesoscopic systems, complex nuclei and atoms, etc.
Universality of fluctuations is an important aspect of its applications. There are
three universality classes which are described by the three invariant random-matrix
ensembles, viz., orthogonal ensemble (OE), unitary ensemble (UE) and symplectic
ensemble (SE). These are defined by invariance of the ensemble measure under the
orthogonal, unitary and symplectic transformations respectively and are related to
the time reversal and rotational symmetries of the system. Gaussian ensembles
(GE) of Hermitian matrices and circular ensembles (CE) of unitary matrices are of
particular interest in these studies. For GE the invariant ensembles are GOE, GUE
and GSE and for CE the invariant ensembles are COE, CUE, CSE. These ensembles
have been studied extensively. For large matrices, the two types of ensembles have
same fluctuation properties when belonging to the same invariance class.
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When the symmetry of a system is gradually broken, the spectral fluctuations un-
dergo transition from one universality class to another. The problem of transitions
between the universality classes of spectral fluctuations has been studied since the
1960’s when the classic papers of Rosenzweig and Porter [6] and Dyson [7] were pub-
lished. These transitions are useful in the context of complex systems with weakly
broken symmetries [8,9]. For the breaking of time reversal symmetry, one considers
OE–UE and SE–UE transitions [10–12]. For the breaking of a partitioning sym-
metry involving several quantum numbers, one considers `OE–OE, `UE–UE and
`SE–SE transitions, where ` refers to the number of overlapping quantum numbers
and ` ensembles refer to superposition of ` independent spectra in arbitrary ratio
[6,9,13–16]. For ` →∞ the initial ensemble becomes Poisson [9,14–19].

Typically, one considers a single symmetry breaking parameter τ , which governs
the transition and is a measure of the square of the norms of symmetry breaking
and symmetry preserving parts. For infinitely large matrices the transition in fluc-
tuations occurs discontinuously at τ = 0 [6–8]. However, in the same limit smooth
transition in fluctuations is obtained for small τ as a function of appropriately
rescaled transition parameter Λ [9–16]. Examples and applications of such transi-
tions have been found in the spectra of complex atoms [6] and nuclei [9,13], and
quantum chaotic systems [20–22]. See also [4,23,24] for applications to mesoscopic
quantum transport problems.

The transition ensembles also give identical results for the Gaussian and circular
cases with suitably defined parameter Λ. For example, OE–UE and SE–UE tran-
sitions in CE [12] are found to be the same as the corresponding transitions in GE
[10,11]. Similarly, transition results obtained for Poisson to GUE [19] transition
coincide with the results of Poisson to CUE transition [14,15] and 2CUE to CUE
transition results [14,15] coincide with 2GUE to GUE results [13].

Brezin and Hikami [25] have developed the contour-integral method for deriving
correlation functions for transitions to GUE. This method has been used in [19] for
the two-level correlation function for Poisson to GUE transition. We have recently
shown [16] that the same method can also be used for transitions to CUE and can
be generalized to `CUE to CUE transition. In this paper we review our methods
and results given in [16] and make extensions to derive the results for the Poisson
to CUE transition with arbitrary initial density.

The paper is organized as follows. In §2 we review the contour integral method
for transitions to CUE. In §3 we derive the two-level correlation function for Poisson
to CUE transition with arbitrary initial density and give numerical illustration of
our results. In §4 we briefly discuss the more general `CUE to CUE transition. The
results are summarized in the concluding section.

2. Contour integral representations of correlation functions

Transitions in the Gaussian and circular ensembles are best described in terms of
Dyson’s Brownian motion model [7]. We consider N -dimensional matrices. For the
GE the transition ensembles are given by

H(τ + δτ) = H(τ) +
√

δτM(τ), (1)
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where
√

δτ is infinitesimal, H(0) is a diagonal matrix and M(τ), independent for
each τ , is a member of the invariant Gaussian ensembles GOE, GUE and GSE
respectively for β = 1, 2 and 4. Average of the square of the off-diagonal matrix
elements is βv2 where v2 supplies a scale for the symmetry breaking parameter τ .
An equivalent description of the transition ensembles for GEs can be given by a
linear interpolation of the initial and the final matrix ensembles [6].

The transition ensembles for the CE are given by

U(τ + δτ) = U(τ) exp[i
√

δτM(τ)], (2)

where U(0) is a diagonal matrix and M(τ) is the same as in (1). We fix the scale
by v2 = 1. The matrix elements of U(0) is given by Ujk(0) = exp[iφj ]δjk where
φj are the eigenangles. Let θj be the eigenangles of U(τ). The sets {φ1, ..., φN}
and {θ1, ..., θN} are written as Φ and Θ respectively. Similarly, we write the sets
{eiφ1 , ..., eiφN } and {eiθ1 , ..., eiθN } as eiΦ and eiΘ. The joint probability density
(jpd) of the eigenangles, P (Θ; τ), is given in terms of the initial jpd P (Φ; 0) by

P (Θ; τ) =
∫

dφ1...dφNP (Θ, Φ; τ)P (Φ; 0). (3)

The conditional jpd, P (Θ, Φ; τ), satisfies the Fokker–Planck equation [7,12]

∂P

∂τ
=

∑

j

∂

∂θj

[ ∂P

∂θj
− β

2

∑

k(6=j)

cot
(

θj − θk

2

)
P

]
. (4)

For τ → ∞, (4) yields the COE, CUE and CSE densities as equilibrium densities
respectively for β = 1, 2 and 4,

Peq ≡ P (Θ;∞) = CN,β |QN (Θ)|β . (5)

Here

QN (Θ) =
∏

j>k

sin
(

θj − θk

2

)
, (6)

and CN,β is the normalization constant [1]. QN (Θ) is related to the Vandermonde
determinant ∆N (eiΘ) of the eigenangles,

QN (Θ) =
exp

(
−i(N − 1)

∑N
j=1 θj/2

)
∆N (eiΘ)

(2i)N(N−1)/2
. (7)

The self-adjoint or Hamiltonian form of the diffusion equation (4) is obtained by
the similarity transformation P → ξ = P

−1/2
eq P and is given by

∂ξ

∂τ
= −Hξ, (8)

where H is the Sutherland Hamiltonian [12,14],

Pramana – J. Phys., Vol. 73, No. 3, September 2009 507



Vinayak and Akhilesh Pandey

H = −
∑

j

∂2

∂θ2
j

− β2

48
N(N2 − 1) +

β(β − 2)
16

∑

j 6=k

cosec2

(
θj − θk

2

)
. (9)

(In the Gaussian case one obtains similarly the Calogero Hamiltonian.) For β = 2
the interaction terms in (9) drops out and a compact solution can be obtained.
Thus the conditional jpd for transitions to CUE [12] is given by

P (Θ,Φ; τ) =
1

N !
QN (Θ)
QN (Φ)

exp
(

N(N2 − 1)τ
12

)

×det[f(θj − φk; τ)]j,k=1,...,N , (10)

where

f(ψ) =
1
2π

∞∑
µ=−∞

exp(−µ2τ + iµψ) (11)

with integral or half-integral µ for odd and even N respectively.
For the Poisson initial ensemble, φj are statistically independent and identically

distributed with density w(φ), where w is a smooth function of φ. Thus we have

P (Φ; 0) =
N∏

j=1

w(φj). (12)

In the earlier papers [14–16] w(φ) = 1/2π has been considered. We show in this
paper that the unfolded two-level correlation function is independent of w(φ), if the
parameter τ is rescaled appropriately. Equation (10) has also been used with other
initial ensembles, viz., COE and CSE [12] and 2CUE [14,15]. We have recently
considered the more general `CUE initial ensemble [16].

In the contour integral method it is convenient to deal with the Fourier expansion
of the correlation functions. We compute the ensemble averages of

C1(p) =
N∑

k=1

exp(ipθk), (13)

C2(p, q) =
N∑

k 6=l

exp(ipθk + iqθl), (14)

where p and q take all possible integral values. The ensemble average of a symmetric
function F(Θ) with respect to P (Θ; τ) is defined in two steps. Using bars to denote
average over θj with respect to the conditional jpd, we have

F̄ ≡
∫

dθ1...dθNF(Θ)P (Θ, Φ; τ)

=
∫

dθ1...dθNF(Θ)
QN (Θ)
QN (Φ)

exp
[
N(N2 − 1)τ

12

] N∏

j=1

f(θj − φj ; τ), (15)
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where in the second step det[f(θj − φk)] has been replaced by N !
∏N

j=1 f(θj − φj)
using the symmetry of F . Next we use angular brackets to represent averaging over
φj with respect to the initial jpd. Thus we have finally

〈F̄〉 ≡
∫

dθ1...dθNF(Θ)P (Θ; τ)

=
∫

dφ1...dφN F̄P (Φ; 0). (16)

Choosing F = 1 in (15), we get the identity

∫
dθ1...dθNQN (Θ)

N∏

j

f(θj − φj ; τ) = exp
[−N(N2 − 1)τ

12

]
QN (Φ).

(17)

From (17) we obtain the relation,

∫
dθ1...dθNeiΣN

j=1bjθj QN (Θ)
N∏

j=1

f(θj − φj ; τ)

= exp
[−N(N2 − 1)τ

12

]
exp

[ N∑

j=1

(−b2
jτ + ibjφj)

]
QN (Φ + 2ibτ), (18)

valid for all integral values of bj . Here Φ+2ibτ represents the set {φ1+2ib1τ, ..., φN +
2ibNτ}. In (18) we have used the identity

∑∞
l=−∞ g(l) =

∑∞
l=−∞ g(l+b) for integer

b. Using (6), (15) and (18) for C1(p) and C2(p, q) we get

C̄1(p) = exp[−p2τ + (N − 1)pτ ]
N∑

j=1

eipφj

∏

k(6=j)

(
1 +

eiφj χp

eiφj − eiφk

)
, (19)

C̄2(p, q) = exp[−p2τ + (N − 1)pτ ]

× exp[−q2τ + (N − 1)qτ ]
∑

j 6=k

eipφj+iqφk

×F (eiφj , eiφk)
∏

l(6=j)

(
1 +

eiφj χp

eiφj − eiφl

)

×
∏

l′(6=k)

(
1 +

eiφkχq

eiφk − eiφl′

)
. (20)

Here χp and F are given by

χp ≡ χ(p, τ) = exp(−2pτ)− 1, (21)

and
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F (z1, z2) =
(z1 − z2) (z1e−2pτ − z2e−2qτ )
(z1e−2pτ − z2) (z1 − z2e−2qτ )

= 1 +
z1z2χpχq

[z1(χp + 1)− z2] [z1 − z2(χq + 1)]
. (22)

The last form of (22) is useful in the decomposition in (40). These expressions
can be simplified further by replacing the summations by contour integrals. Let
the contour Γ consists of two concentric circles Γ1 and Γ2 of radii 1 + ε and 1 − ε
respectively, where 1 > ε > 0. Γ encloses all the initial eigenvalues. We choose Γ1

and Γ2 both in the anti-clockwise direction so that the Γ integral is the difference
of the Γ1 and Γ2 integrals. We avoid singularities of F by choosing |p|τ > ε and
|q|τ > ε. Using all these, the ensemble averages of C1(p) and C2(p, q) can be written
as

〈C̄1(p)〉 = K(p; τ)
∮

Γ

dz

2πi

zp

z

〈
N∏

k=1

(
1 +

zχp

z − eiφk

)〉
, (23)

〈C̄2(p, q)〉 = K(p; τ)K(q; τ)
∮

Γ

dz1

2πi

∮

Γ

dz2

2πi

zp
1

z1

zq
2

z2
F (z1, z2)

×
〈

N∏

l=1

[ (
1 +

z1χp

z1 − eiφl

)(
1 +

z2χq

z2 − eiφl

) ]〉
, (24)

where

K(p; τ) = exp[−p2τ + (N − 1)pτ ](χp)−1. (25)

Equations (15)–(24) are analogous to the corresponding equations for transitions
to GUE [19,25].

Transition in fluctuations is obtained for τ = O(N−2) [12,14] for large N . For
C̄1(p) it is adequate to consider p = O(1). (For C̄2, p and q should both be O(N),
as shown in the next section.) For large N , χp = O(N−2) and Kp = O(N2). We
expand the product in (23) and observe that the first non-vanishing term is linear
in χp. Thus 〈C̄1(p)〉 = O(N). In the limit, we obtain

lim
N→∞

1
N
〈C̄1(p)〉 =

∮

Γ

dz

2πi
zpα(z), (26)

where

α(z) = 〈(z − eiφ)−1〉 =
∫ 2π

0

dφρ(φ; 0)(z − eiφ)−1 (27)

with the level density ρ(φ; τ) given by

ρ(φ1; τ) =
∫

dφ2...dφNP (Φ; τ). (28)

Equation (26) implies that
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lim
N→∞

1
N
〈C̄1(p)〉 = 〈exp(ipφ)〉. (29)

We see that, during the transition in fluctuations, the level density does not change
appreciably. Moreover, ρ(φ) = w(φ) in the Poisson case.

3. The two-level correlation function

In this section we derive the two-level correlation function for large N . We define
C(p, q),

C(p, q) =
1
N

[〈C̄2(p, q)〉 − 〈C̄1(p)〉〈C̄1(q)〉], (30)

which is related to the Fourier transform of the correlation function. With the
parametrization of p and q,

p =
m

2
+ 2πNkρ, (31)

q =
m

2
− 2πNkρ, (32)

the N →∞ limit of C(p, q) is given by

C(p, q) = −
∫ 2π

0

dθ exp(imθ)ρ(θ)
∫ ∞

−∞
dr exp(2πikr)Y2(r; Λ)

= −
∫ 2π

0

dθ exp(imθ)ρ(θ)b2(k; Λ). (33)

Here Y2(r; Λ) is the cluster correlation function [1,2], θ = (θ1 + θ2)/2, r = (θ1 −
θ2)Nρ, and the transition parameter Λ is given by

Λ = τρ2N2. (34)

The spectral form factor b2(k; Λ) is the Fourier transform of Y2(r; Λ),

b2(k; Λ) =
∫

dr exp(2πikr)Y2(r; Λ). (35)

Note that b2(k; Λ) is in the integrand of the last form of (33) since ρ and Λ are in
general θ-dependent. Note also that (33) does not have self-correlation term since
the latter is excluded in the definition (14). We also remark that p, q = O(N) but
m = O(1). This comes about because the density ρ is a smooth function of θ while
the spectral fluctuations are defined on the O(N−1) scale.

Using the initial jpd (12) in (23) and (24), we obtain

〈C̄1(p)〉 = K(p; τ)
∮

Γ

dz1

2πi

zp

z
[Ω(z)]N , (36)

and
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〈C̄2(p, q)〉 = K(p; τ)K(q; τ)
∮

Γ

dz1

2πi

∮

Γ

dz2

2πi

zp
1

z1

zq
2

z2
F (z1, z2)[D(z1, z2)]N .

(37)

Here

Ω(z) ≡ Ω(z, p) = 1 + χpzα(z), (38)

and

D(z1, z2) ≡ D(z1, z2, p, q) = 1 + χpz1α(z1) + χqz2α(z2)

+
χpχqz1z2

z2 − z1

[
α(z1)− α(z2)

]
, (39)

with α(z) given in (27). For large N , (36) is consistent with (26). Using (36) and
(37) in (30) we write

C(p, q) = ζ1(p, q) + ζ2(p, q), (40)

where

ζ1(p, q) =
K(p; τ)K(q; τ)

N

∮

Γ

dz1

2πi

∮

Γ

dz2

2πi

zp
1

z1

zq
2

z2

× [{D(z1, z2)}N − {Ω(z1, p)Ω(z2, q)}N
]
, (41)

ζ2(p, q) =
K(p; τ)K(q; τ)

N

∮

Γ

dz1

2πi

×
∮

Γ

dz2

2πi

zp
1zq

2χpχq {D(z1, z2)}N

[z1(χp + 1)− z2] [z1 − z2(χq + 1)]
. (42)

ζ1 and ζ2 correspond to the two terms in the last form of (22).
Now we use the change of variables,

z1 =
(

1 +
cδ

N

)
exp

[
i
(
θ +

y

2N

)]
, (43)

z2 =
(

1 +
c′δ
N

)
exp

[
i
(
θ − y

2N

)]
, (44)

where δ = Nε > 0. c, c′ take values ±1 depending on the branch of Γ, being +1
for Γ1 and −1 for Γ2. It is useful to write α(z) as

α(eiψ) =
1

2eiψ
(1− 2if(ψ)) , (45)

where f(ψ) is a transform of the density, given by

f(ψ) =
1
2

∫ 2π

0

cot
(

ψ − θ

2

)
ρ(θ)dθ (46)
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with complex ψ [12]. For large N , f(ψ) can be written in terms of density ρ as

f

(
θ − i

cδ

N

)
=

1
2
P

∫
ρ(φ) cot

(
θ − φ

2

)
dφ + iπcρ(θ) + O

(
1
N

)
, (47)

where P denotes the principal value of the integral. Thus, to the leading order in
N , we obtain

χp = −χq = −4πΛk
ρN

, (48)

K(p; τ)K(q; τ) = −N2ρ2 exp(−8π2Λk2)
16π2Λ2k2

, (49)

dz1dz2 = −z1z2dθdy/N, (50)

N(z1 − z2) = iy exp(iθ), c = c′,
= (iy + 2cδ) exp(iθ), c 6= c′, (51)

zp
1zq

2 = exp(imθ) exp(2πiykρ), c = c′,
= exp(imθ) exp[2π(iy + 2cδ)kρ], c 6= c′, (52)

and

N(z1(χp + 1)− z2) = N(z1 − z2(χq + 1))
= (iy − 4πkΛ/ρ) exp(iθ), c = c′,
= (iy + 2cδ − 4πkΛ/ρ) exp(iθ), c 6= c′. (53)

Similarly, we have

Ω(z1, p) = 1− 4πΛk
Nρ

[
−if

(
θ − icδ1

N

)
+

1
2

]
, (54)

Ω(z2, q) = 1 +
4πΛk
Nρ

[
−if

(
θ − ic′δ2

N

)
+

1
2

]
, (55)

where δ1 = δ + iyc/2 and δ2 = δ − iyc′/2. Finally, we also have

D = 1 + O
(
N−2

)
, c = c′,

= 1− 8π2Λk cN−1[1− 4πΛk/[(iy + 2cδ)ρ]] + O
(
N−2

)
, c 6= c′.

(56)

Thus
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[Ω(z1, p)Ω(z2, q)]
N = 1, c = c′,

= exp(−8π2Λkc), c 6= c′, (57)

and

{D(z1, z2)}N = 1, c = c′,
= exp(−8π2Λkc)
× exp[32π3Λ2k2c/[(iy + 2cδ)ρ]], c 6= c′. (58)

We insert these large N -expressions in (41), (42) and consider limit N →∞. We
obtain, after some algebra,

ζ1 =
∑

c

∫ 2π

0

dθ exp(imθ)ρ(θ) exp[−8π2Λkc(1 + kc)]L1, (59)

ζ2 =
∑

c

∫ 2π

0

dθ exp(imθ)ρ(θ) exp[−8π2Λkc(1 + kc)]L2, (60)

where, as in the Gaussian case [19],

L1,2 =
∫ ∞

−∞

dy

2π
eb(iy+2δ)

[
exp

(
σ

iy + 2δ

)
− 1

]
F1,2 (61)

with

F1 =
1
σ

, (62)

F2 =
1

2πρ (y + i(4πΛkc/ρ− 2δ))2
(63)

and

σ = 32π3Λ2k2/ρ = 2πρ(4πΛk/ρ)2, (64)

b = 2πρkc. (65)

Here, in (59) and (60), only the two c 6= c′ terms contribute and are given as a
summation over c. In (61), a change of variable yc → y has been used. Also, in
(42), DN can be replaced by [D(z1, z2)]N − [Ω(z1, p)Ω(z2, q)]N without changing
the value of the integral. This gives the additional (−1) term in the square bracket
of L2. This term can be dropped from further consideration as in (67) below.

Now using (40), (59) and (60) in (33), we find

b2(k; Λ) = −
∑

c

exp[−8π2Λkc(1 + kc)](L1 + L2). (66)

To solve the integrals in (61) we substitute u = iy + 2δ and close the contour by
an infinite semicircle. The integrand in L1 has pole at u = 0 and in L2 has poles
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at u = 0 and 4πΛkc/ρ. Note that 4πΛ|k|/ρ > 2δ because of our choice |p|τ > ε in
(24). The semicircle is on the left side of the line <(u) = 2δ if kc > 0 and on the
right side if kc < 0. For kc > 0 only u = 0 pole contributes to the integrand while
for kc < 0 no pole contributes. Thus only one of the values of c contributes to the
summation and we can choose the semicircle on the left with kc replaced by |k|.
Replacing this contour by a circular contour of radius < 2πΛ|k|/ρ, we find

b2(k; Λ) =
e−8π2Λ|k|(1+|k|)

2πρ

×
∮

|u|<2πΛ|k|/ρ

du

2πi
exp[2π|k|ρu] exp

[(
4πΛ|k|

ρ

)2 2πρ

u

]

× u(8πΛ|k|/ρ− u)
(4πΛ|k|/ρ)2(4πΛ|k|/ρ− u)2

. (67)

By scaling u as 4πΛ|k|u/ρ we get

b2(k; Λ) =
exp(−8π2Λk2 − 8π2Λ|k|)

8π2Λ|k|
∮

|u|<1

du

2πi

u(2− u)
(1− u)2

× exp[8π2Λ|k|(u|k|+ 1/u)]. (68)

Next the substitution u = 1/z and a partial integration gives

b2(k; Λ) =
∮

|z|>1

dz

2πi

1
z(z − 1)

(
1− |k|

z2

)

× exp[−8π2Λk2(1− z−1)− 8π2Λ|k|(1− z)]. (69)

Now, as in [19], we choose |z| =
√
|k| in which case the contribution of the z = 1

pole has to be calculated for |k| < 1. The latter gives b2(k;∞) which is 1 − |k|
for |k| < 1. On the other hand b2(k;∞) = 0 for |k| > 1. Then the substitutions
z =

√
|k| exp(iθ) along with y = − cos θ gives the result for b2(k; Λ)

b2(k; Λ) = b2(k;∞)− 2
π

∫ 1

−1

dy

√
1− y2(2y

√
|k|+ 1)

|k|+ 2y
√
|k|+ 1

× exp[−8π2Λ|k|(|k|+ 2y
√
|k|+ 1)]. (70)

The inverse Fourier transform of (70) gives

Y2(r,Λ)− Y2(r,∞) = − 4
π

∫ ∞

0

dk cos(2πrk)

×
∫ 1

−1

dy
√

1− y2
(2y

√
k + 1)

k + 2y
√

k + 1

× exp[−8π2Λk(k + 2y
√

k + 1)],

= − 4
π

∫ 1

−1

dy
√

1− y2
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×
∫ ∞

0

dk exp[−8π2Λk(k + 2y
√

k + 1)]

×[cos(2πrk)− cos(2πr(k + 2y
√

k + 1))]. (71)

For fixed Λ, eqs (70), (71) are independent of ρ(φ) and coincide with the results
given earlier [14]. The same result is given in eq. (117) of [15] with two typing
errors.

To illustrate these results we have numerically integrated (70) and (71). Also we
have computed the number variance Σ2(r) given by

Σ2(r; Λ) = r −
∫ r

−r

ds(r − s)Y2(s; Λ)

=
∫ ∞

−∞
dk

sin2(πkr)
π2k2

(1− b2(k; Λ)), (72)

where r > 0. In figure 1 we show 1−b2(k; Λ), 1−Y2(r; Λ) and Σ2(r; Λ) respectively
as functions of k, r and r for several values of Λ. For Poisson spectrum b2(k) = 0,
Y2(r) = 0 and Σ2(r) = r. As shown in figure 1a, b2(0; Λ) = 0 for Λ 6= ∞ and 1 for
Λ = ∞. b2(0; Λ) is a measure of spectral rigidity. Similarly Y2(0; Λ) is a measure
of level repulsion. As we have shown in figure 1b, Y2(0; Λ) = 1 for Λ 6= 0. Figure
1c shows how Σ2(r) becomes logarithmic from linear in r, as Λ increases.

4. `CUE to CUE transition

The contour integral method can be extended to the more general case where the
initial condition is the `CUE. Here `CUE is an ensemble of block-diagonal matrices
with ` blocks of dimensions N1, N2, ..., N` (

∑`
j=1 Nj = N), each block being an in-

dependent CUE. ` = 1 corresponds to the case where the ensemble is CUE for all τ .
On the other hand, ` = N corresponds to independent eigenangles, giving thereby
Poisson initial spectrum for N → ∞. For intermediate ` we have superposition of
` independent CUE spectra initially. This transition applies to time-reversal non-
invariant systems with a weakly broken partitioning symmetry. The `CUE initial
jpd is given by

P (Φ; 0) ∝ [|QN1(φ1, ..., φN1)QN2(φN1+1, ..., φN1+N2)
...QN`

(φN−N`+1, ..., φN )|2 + permutations
]
. (73)

For ` = 1, (73) is the same as the CUE jpd (5). For ` = N , we obtain (12) with
w(φ) = 1/2π.

For the general `CUE case we find [16] that

b2(k; Λ) =
e−8π2Λ|k|(1+|k|)

8π2Λ|k|
∫ γ+i∞

γ−i∞

du

2πi
e8π2Λk2u

×
(∏`

j=1[e
8π2Λ|k|fj(2−u) − (1− u)2]

(1− u)2[u(2− u)]`−1
+ 1

)
, (74)
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Figure 1. Plot of 1− b2(k; Λ) vs. k (a), 1− Y2(r; Λ) vs. r (b) and Σ2(r; Λ)
vs. r (c). These are obtained respectively by the numerical integrations of eqs
(70)–(72) for different values of Λ.

where fj = Nj/N and γ → +0. For ` = 1, we obtain the CUE form factor b2(k,∞).
For ` = 2, we obtain

b2(|k|; Λ) = b2(|k|;∞)

−1
2

[ ∫ 2|k|+1

(2|k|+|f1−f2|,1)>

dy g(y)−
∫ (2|k|−|f1−f2|,1)>

(2|k|−1,1)>

dy g(y)

]
,

(75)

where g(y) = exp[8π2Λ|k|(|k| − y)]. This result has been given earlier [14,15] along
with the two-level cluster function

Y2(r; Λ)− Y2(r;∞)

= −
∫ 1

|f1−f2|
dx

∫ ∞

1

dy e2π2Λ(x2−y2) sin(πrx) sin(πry). (76)

For Poisson initial condition (viz., ` →∞, fj → 0 such that
∑

fj = 1), we obtain
from (74)
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b2(k; Λ) =
e−8π2Λ|k|(1+|k|)

8π2Λ|k|

×
∫ γ+i∞

γ−i∞

du

2πi
e8π2Λk2u

(
e8π2Λ|k|/u u(2− u)

(1− u)2
+ 1

)
(77)

This is equivalent to (68). Proof of these results will be given elsewhere [16].

5. Conclusion

We have developed the contour integral method for the CUE transitions. This
is analogous to the method developed for the GUE transitions [19,25]. We have
used this method to derive the two-level correlation function for the Poisson to
CUE transition which has been studied earlier for uniform initial density by an-
other method [14,15]. In this paper we have used the contour integral method to
generalize the result to the case where the initial density is nonuniform. We have
shown that the same result is valid for all smooth initial densities when written in
terms of appropriately rescaled transition parameter Λ. The result for the Poisson
to GUE transition [19] also coincides with the earlier result. We remark however
that the result given in [17,18] has not yet been shown to be the same.

We have reviewed briefly our recent work [16] on the `CUE to CUE transitions.
This is a generalization of the Poisson to CUE case where the latter corrresponds
to the limit ` →∞. The finite-` result may be more useful in real applications. We
believe that the method is generalizable to `GUE to GUE transitions and also to
the similar transitions in nonuniform circular ensembles [26] and in Laguerre and
Jacobi ensembles [27].

Finally we mention that the original problem of Poisson to GOE [6] and the re-
lated `GOE to GOE transitions, as also the corresponding COE transitions, is still
largely unsolved. However there are approximate results given in [14]. There are
also exact results for Poisson to GOE transition given in terms of Grassmann inte-
grals by Guhr and Kohler [28,29] and Datta and Kunz [30]. These results have
neither been shown to be consistent with each other, nor with any numerical
simulations of such transitions.
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