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Quantum-classical correspondence
of the Dirac equation with a scalar-like potential

MAI-LIN LIANG∗, SHUN-LIN SHU and BING YUAN
Physics Department, School of Science, Tianjin University, Tianjin 300072, China
∗Corresponding author. E-mail: mailinliang@yahoo.com.cn; mailinliang@eyou.com

MS received 24 September 2006; revised 6 December 2008; accepted 23 December 2008

Abstract. Quantum matrix elements of the coordinate, momentum and the velocity
operator for a spin-1/2 particle moving in a scalar-like potential are calculated. In the large
quantum number limit, these matrix elements give classical quantities for a relativistic
system with a position-dependent mass. Meanwhile, the Klein–Gordon equation for the
spin-0 particle is discussed too. Though the Heisenberg equations for both the spin-0 and
spin-1/2 particles are unlike the classical equations of motion, they go to the classical
equations in the classical limit.
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1. Introduction

There have been many investigations on the quantum-classical correspondence in
the literature [1–10]. The most often mentioned correspondence principle is perhaps
the Bohr correspondence principle, which states that a quantum system behaves like
the corresponding classical system in large quantum limit. Recently, the Heisen-
berg correspondence principle (HCP) has aroused much interest [6–10]. HCP says
that in the classical limit, the quantum matrix elements correspond to the Fourier
components of the classical motion. As is well known, the Heisenberg equations
of motion in quantum mechanics are similar to the classical equations. For ex-
ample, for the harmonic oscillator the Heisenberg equations of the coordinate and
momentum operators are

dx

dt
=

p

µ
,

dp

dt
= −µω2

0x, (1.1)

where µ and ω0 are the mass and frequency respectively. The mean values of the
coordinate and momentum for an eigenstate are zero and eq. (1.1) becomes 0 = 0.
No useful information can be obtained from the mean values. HCP deals with the
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problem of quantum-classical correspondence from the aspect of quantum matrix
elements. Using the Schrödinger equation, it is not difficult to show that the matrix
elements

xmn(t) =
∫

ψ∗m(x, t)xψn(x, t)dV

pmn(t) =
∫

ψ∗m(x, t)pψn(x, t)dV (1.2)

satisfy the following equations of motion:

dxmn(t)
dt

=
pmn(t)

µ
,

dpmn(t)
dt

= −µω2
0xmn(t) (1.3)

which are similar to (1.1). Making sum over m in (1.3), one sees that the sum of
the possible matrix elements

∑
m xmn(t) = xn(t),

∑
m pmn(t) = pn(t) also satisfy

(1.3)

dxn(t)
dt

=
pn(t)

µ
,

dpn(t)
dt

= −µω2
0xn(t). (1.4a)

At finite n, the quantities xn(t), pn(t) are complex. But, in the limit n →∞, they
become real. By some calculations one gets

xn(t) =
√
~/(2µω0)

[√
n exp(−iω0t) +

√
n + 1 exp(iω0t)

]
(1.4b)

which is complex. In the limit n → ∞, we have xn(t) = A cos ω0t, with the
amplitude A →

√
2n~/(µω0) and the energy En = (n + 1/2)~ω0 → n~ω0. The

energy and the amplitude now obey the classical relation En = (1/2)µω2
0
A2. In the

classical limit, one needs to treat n~ as a classical quantity.
Generally, writing the wave function for a quantum system as

ψq(x, y, z, t) = ψq(x, y, z) exp(−iEqt), (1.5)

where q stands for all the possible quantum numbers, the following quantity

Ωq(t) =
∑

Q

∫
ψ∗Q(x, y, z, t)Ωψq(x, y, z, t)dV (1.6)

with Ω being the Hermitian operator for a physical observable and dV = dxdy dz
being a small volume in space, should generate the classical result in the large
quantum number limit (which is the Bohr correspondence principle) according to
the idea of HCP. In the next section, a general explanation that the quantity (1.6)
is real in the classical limit is given (see (2.13–2.16)).

In non-relativistic case and the relativistic case discussed in [10], the Heisenberg
equation of motion for the momentum operator can be written as

d⇀
p

dt
=

⇀

F, (1.7)
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where
⇀

F represents the external force. For a charged particle moving in a magnetic
field,

⇀

F has the form q
⇀
v × ⇀

B; for a particle moving in an external potential,
⇀

F is
−∇V . Clearly, eq. (1.7) is similar to the corresponding classical equation. So, it
may not be difficult to understand why eq. (1.7) reduces to the classical equation
in the classical limit. However, for the relativistic case, the problem is more com-
plicated. The Heisenberg equation of motion is not always similar to the classical
equation. For the scalar-like confining potential, the Hamiltonian is [11,12]

H = ⇀
α · ⇀

pc + β(mc2 + Az) (1.8)

and the Heisenberg equations of motion take the form

dpx

dt
=

dpy

dt
= 0,

dpz

dt
= −βA, (1.9)

where pj , j = x, y, z are the three components of the momentum. The form of the
equation for pz in (1.9) is different from that in (1.7). On the right-hand side in
(1.9), there is a 4× 4 matrix β. Hence, it is interesting to see if the equation for pz

can give the classical equation in the classical limit.
This article is arranged as follows. The next section gives the matrix elements

and the classical limits for the scalar-like potential, where the spin-0 particle is
discussed too. The final section is the conclusion.

2. Matrix elements and the classical limits

For the scalar-like confining potential, the energy eigenvalues are [11,12]

En = ±
√

2(n + 1)~cA + p2
1c

2 + p2
2c

2. (2.1)

In quantum field theory, the positive and negative energy solutions correspond to
particle and antiparticle respectively and there are particle creations and annihila-
tions. However, when we discuss the quantum-classical correspondence in quantum
mechanics, we should restrict to one particle each time. Next we focus on the
particle or positive energy solution. For the antiparticle, discussions are similar.
Introducing the function

φn(ξ) = NnHn(ξ) exp
(
−1

2
ξ2

)
, Nn =

( √
A√

~cπn!2n

)1/2

(2.2)

the eigenfunctions can be written in the form

ψq(x, y, z, t) = Cn




φn+1(ξ)
Nn+1

+ En√
~cA

φn(ξ)
Nn

(p2 − ip1)
√

c
~A

φn(ξ)
Nn

i
(

φn+1(ξ)
Nn+1

− En√
~cA

φn(ξ)
Nn

)

− (p2 + ip1)
√

c
~A

φn(ξ)
Nn




exp
[
i
p1x + p2y − Ent

~

]
,

(2.3)

Pramana – J. Phys., Vol. 72, No. 5, May 2009 779



Mai-Lin Liang, Shun-Lin Shu and Bing Yuan

where the parameter ξ =
√

A/ (~c)(mc2/A + z), the normalization constant Cn =

Nn~c
(√

A/(~c)
)3/2

/(2En), Hn(ξ) is the Hermitian polynomial, q represents p1, p2

and n. Through some calculations, we have

xq(t) =
p1c

2

En
t, yq(t) =

p2c
2

En
t (2.4)

zq(t) = −mc2

A
+

√
n~c(En + En−1)

2
√

2AEn−1

exp
[
i
En−1 − En

~
t

]

+

√
(n + 1)~c(En + En+1)

2
√

2AEn

exp
[
i
En+1 − En

~
t

]
(2.5)

and

pxq(t) = p1, pyq(t) = p2 (2.6)

pzq(t) = −i

√
n~A/c (En + En−1)

2
√

2En−1

exp
[
i
En−1 − En

~
t

]

+i

√
(n + 1) ~A/c (En + En+1)

2
√

2En

exp
[
i
En+1 − En

~
t

]
. (2.7)

In the large quantum number limit, (2.4)–(2.7) become

xc(t) =
p1c

2

Ec
t, yc(t) =

p2c
2

Ec
t, (2.8)

zc(t) = −mc2

A
+

√
2n~c
A

cos ωt, (2.9)

pxc(t) = p1, pyc(t) = p2, (2.10)

pzc(t) = −
√

2n~A
c

sin ωt, (2.11)

where ω = Ac/En = ∂En/∂(n~), Ec is the energy when n is very large. In the
derivations, the following relations are used:

En±1 − En =
√

2 (n + 1± 1) ~cA + p2
1c

2 + p2
2c

2 − En

=
√

E2
n ± 2~cA− En = En(1± 2A~c/E2

n)1/2 − En

→ En ± ~cA/En − En = ±~cA/En = ±~ω. (2.12)
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At finite quantum number, quantities in (2.5) and (2.7) are complex functions of
time. But, in the large quantum number limit, they become real as shown in (2.9)
and (2.11). Now we give a general explanation that in the large quantum limit
the quantity (1.6) becomes real. To be mathematically simple, we use the Dirac
notation. The wave function is written as |ψq(t)〉 and the sum of the possible matrix
elements become Ωq(t) =

∑
Q 〈ψQ(t)|Ω|ψq(t)〉. The sum can be divided into two

parts: One is that Q > q and the other is Q < q

Ωq(t) =
∑

Q>q

〈ψQ(t)|Ω |ψq(t)〉+
∑

Q<q

〈ψQ(t)|Ω |ψq(t)〉

=
∞∑

k=0

〈ψq+k|Ω |ψq(t)〉+
q∑

k=0

〈ψq−k(t)|Ω |ψq(t)〉 . (2.13)

In the classical limit q →∞, the quantity (1.6) or (2.13) becomes

Ωq(t) →
∞∑

k=0

〈ψq+k|Ω |ψq(t)〉+
∞∑

k=0

〈ψq−k(t)|Ω |ψq(t)〉

=
∞∑

k=0

[〈ψq+k|Ω |ψq(t)〉+ 〈ψq−k(t)|Ω |ψq(t)〉 . (2.14)

Let us focus our attention on each term 〈ψq+k|Ω |ψq(t)〉+ 〈ψq−k(t)|Ω |ψq(t)〉 in the
sum (2.14). Setting q = q′ + k in the second term, one has

〈ψq+k|Ω |ψq(t)〉+ 〈ψq−k(t)|Ω |ψq(t)〉
= 〈ψq+k|Ω |ψq(t)〉+ 〈ψq′(t)|Ω |ψq′+k(t)〉 . (2.15)

The limit q → ∞ results in q′ → ∞. Thus, under the classical limit, there is the
relation 〈ψq′(t)|Ω |ψq′+k(t)〉 = 〈ψq(t)|Ω |ψq+k(t)〉. Or, in the large number limit

〈ψq+k|Ω |ψq(t)〉+ 〈ψq′(t)|Ω |ψq′+k(t)〉
→ 〈ψq+k|Ω |ψq(t)〉+ 〈ψq(t)|Ω |ψq+k(t)〉 . (2.16)

Each term of these two terms is the complex conjugate of the other and so the
quantity (2.16) is real. Thus (1.6) is real too in the classical limit. By some
calculations, we also obtain

(−βA)q(t) = − A

En

{√
n~cA

2
exp

[
i
En−1 − En

~
t

]

−
√

(n + 1)~cA
2

exp
[
i
En+1 − En

~
t

]}
. (2.17)

In the large quantum number limit

(−βA)c(t) → − A

Ec

√
2n~cA cosωt = Fc. (2.18)
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The momentum (2.11) and the force (2.18) obey

dpzc(t)
dt

= Fc. (2.19)

In the next, we will see that (2.19) is in fact the classical equation of motion.
Now, we show that (2.8)–(2.11) are the classical coordinates and momenta of a

classical system with the Hamiltonian

H =
√

p2
xc2 + p2

yc2 + p2
zc

2 + (mc2 + Az)2. (2.20)

It can be proved that the squared classical Hamiltonian is the classical limit of the
squared quantum Hamiltonian (1.8). The classical Hamiltonian (2.20) describes a
system with position-dependent mass. From this Hamiltonian, it is easy to get the
classical equations of motion

dx

dt
=

pxc2

H
,

dpx

dt
= 0

dy

dt
=

pyc2

H
,

dpy

dt
= 0 (2.21)

and

dpz

dt
= F, F = −A

(
mc2 + Az

)

H
dz

dt
=

pzc
2

H
. (2.22)

Notice that dH/dt = ∂H/∂t = 0, or the energy is conserved. Equations (2.21) have
the solutions

x =
p1c

2

Ec
t, y =

p2c
2

Ec
t (2.23)

px = p1, py = p2 (2.24)

which agree with (2.8) and (2.10) respectively. From (2.22), one obtains

d2z

dt2
+ ω2

(
z +

mc2

A

)
= 0, ω =

Ac

Ec
(2.25)

which has the solution

z(t) = −mc2/A + z0 cosωt. (2.26)

Compared to (2.9), one gets the amplitude z0 =
√

2n~c/A. The classical momen-
tum pz(t) = Ec dz/dt agrees with (2.11). The classical force

F = −A
(
mc2 + Az

)

H
= − A

Ec

√
2n~cA cos ωt (2.27)

is the same as (2.18). So, eq. (2.22) is the classical equation for pz in (2.22).
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For the Hamiltonian (1.8), there is also the velocity operator

⇀
α =

d⇀
r

dt
, (2.28)

where r = (x, y, z). Calculations show that quantum matrix elements satisfy this
equation, as pointed out in [10] for other systems.

In the following, we turn to the spin-0 particle, which obeys the Klein–Gordon
equation

[(mc2 + Az)2 + ⇀
p2c2]ψ(x, y, z, t) = E2ψ(x, y, z, t). (2.29)

The wave functions are found to be

ψn(x, y, z, t) =
φn(ξ)
2π

exp
(

i
p1

~
x + i

p2

~
y − i

En

~
t

)
. (2.30)

By some calculations, we have

zn(t) =

√
n~c
2A

exp
[
i
En−1 − En

~
t

]

+

√
(n + 1)~c

2A
exp

[
i
En+1 − En

~
t

]
,

pzn(t) = −i

√
n~A
2c

exp
[
i
En−1 − En

~
t

]

+i

√
(n + 1)~A

2c
exp

[
i
En+1 − En

~
t

]
. (2.31)

These are complex quantities. In the large quantum number limit, eqs (2.31) be-
come real and agree with (2.9) and (2.11). One may write the squared quantum
Hamiltonian for the spin-0 particle as

H2 = ⇀
p2c2 +

(
mc2 + Az

)2
. (2.32)

The Heisenberg equations

dz

dt
=

1
i

[z, H] ,
dpz

dt
=

1
i

[pz, H] (2.33)

are actually very complicated due to the non-commutation between z and pz. But,
through the quantum matrix elements, we have obtained the classical solutions
without much difficulty.

3. Conclusions

For the scalar-like confining potential, we have derived the classical solutions
through the calculations of quantum matrix elements, even though the Heisen-
berg equations are unlike the classical equations. The Klein–Gordon equation and
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the Dirac equation describe spin-0 and spin-1/2 particles respectively. For particles
with higher spin, for example the photon, HCP can also be used. The basic equa-
tions for the electromagnetic field are the Maxwell equations, which take the form
(in vacuum)

∇× ⇀

E = −∂
⇀

B

∂t
, ∇× ⇀

B =
1
c2

∂
⇀

E

∂t
, (3.1)

∇ · ⇀

E = 0, ∇ · ⇀

B = 0, (3.2)

where
⇀

E is the electric field and
⇀

B is the magnetic field. For a long time, discussions
about the photon wave functions were starting from the Maxwell equations [13,14],
due to the belief that the Maxwell equations describe the wave connected with the
photon according to the wave–particle duality. Through some changes, the Maxwell
equations can be changed into other forms. By defining a column vector

|ψ〉 =
1√
W




E1/c + iB1

E2/c + iB2

E3/c + iB3


 (3.3)

with W being a normalization constant, the Maxwell equations in vacuum can be
written as

i~
∂

∂t
|ψ〉 = H |ψ〉 , H = c

⇀

K · ⇀
p, (3.4)

3∑

j=1

∂

∂xj
(Ej + iBj) = 0, (3.5)

where

K1 =




0 0 0
0 0 − i
0 i 0


 , K2 =




0 0 i
0 0 0
−i 0 0


 , K3 =




0 − i 0
i 0 0
0 0 0


 . (3.6)

Equation (3.4) is derived from (3.1) and eq. (3.5) is the conditions (3.2). It is not
difficult to see that eq. (3.4) is similar to the Dirac equation for the free massless
spin-1/2 particles (in this case, Kj , j = 1, 2, 3 are the Pauli matrices). From this

sense, eq. (3.4) describes a massless particle with
⇀

S = ~
⇀

K being the spin operator.
Such a particle corresponds to the electromagnetic field and is thus the photon.
So, the related function in the new form of the Maxwell equations is sometimes
named the photon wave function in the literature [13,14]. One can prove the result
⇀

S2 = s(s+1)~2, with s = 1 or the photon is a spin-1 particle. The third component
operator S3 given in (3.6) has the eigenfunctions

|+1〉 =
1√
2




1
i
0


 , |−1〉 =

1√
2




1
−i
0


 , |0〉 =




0
0
1


 (3.7)
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which correspond to the eigenvalues +1, −1 and 0 respectively. For photon propa-
gating in the z-direction, there are the solutions for the normalized column vector

|ψkσ(z, t)〉 =
1√
2π
|σ〉 exp[i (kz − ωt)] , (3.8)

where σ = ±1 and ω = kc. The state with σ = 0 is forbidden by the condition
(3.5). Using (1.6) and (3.8), it is not difficult to get

zkσ(t) = ct, (pz)kσ (t) = ~k (3.9)

which are the classical coordinate and momentum of a massless particle, the photon.
The basic equation in non-relativistic quantum mechanics is the Schrödinger

equation. However, in relativistic quantum mechanics, different particles satisfy
different forms of equations. To have a general conclusion on the quantum-classical
correspondence in the relativistic regime, further studies need to be done.
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