
PRAMANA c© Indian Academy of Sciences Vol. 72, No. 3
— journal of March 2009

physics pp. 611–615

Ground state of an arbitrary triangle
with a Calogero–Sutherland–Moser potential
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Abstract. We construct the expression for the ground state eigenfunction of the
Schrödinger equation for a particle inside an arbitrary planar triangle under the influ-
ence of a potential.
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Let us consider the multispecies Calogero–Sutherland–Moser (CSM) system for N
particles on a circle of perimeter L with Hamiltonian [1]:

H =
∑

i

p2
i

2mi
+

π2~2

L2

∑

i<j

gij(gij − 1)
(mi + mj)

2mimj

1
sin2 π

L (xi − xj)
. (1)

There are ‘a’ species, each with Na particles such that N =
∑

a Na. Because H
is symmetric in gij and gij − 1, the allowed wave functions satisfy the boundary
conditions

ψ ∼ |xi − xj |gij , xi → xj . (2)

Corresponding to different ordering of particles, there are different sectors distin-
guished by coincident points where the wave functions vanish. Working in the
bosonic basis, if all particles belong to the same species, we can expect

ψ(0, x1, x2, ..., xN−1) = ψ(x1, x2, ..., xN−1, L); (3)

(0 < x1 < x2 < ... < xN−1 < L).
For N = 2, ground state as well as excited states can be found. However, for

N = 3, ground state can only be found if the condition

gij = αmimj (4)
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is satisfied, a condition suggested by asymptotic Bethe ansatz. Remarkably, the
ground state is [1]

Ψ0 =
∏

i<j

∣∣∣∣ sin
π

L
(xi − xj)

∣∣∣∣
gij

(5)

with energy

E0 =
π2~2α

6L2




(∑
a

maNa

)3

−
∑

a

m3
aNa


 . (6)

Here we consider the special case of three particles with masses, m1, m2, m3

on a circle. We now map this system to a ‘particle’ in a triangle with angles
depending on masses and ratios of their combinations. In the work, we solve the
Schrödinger equation for a particle inside a triangular shaped box with a CSM
potential. Due to the nature of the potential, the equation is solved with Dirichlet
boundary conditions. The details of the triangle are obtained by the map that we
describe below. This remarkable map was discovered by Rabouw and Ruijgrok [2]
(much later, re-discovered by Glashow and Mittag [3]). At the expense of repetition,
we have to outline the map to present our final result.

Observe that the total momentum can be set to zero:

P =
∑

k

mkvk = 0. (7)

Let xk be the arclength between the other two particles via the route avoiding the
particle, k;

∑
k xk = L. Kinetic energy is given by

T =
Π
M

∑

k

v2
k

mk
, (8)

where Π = m1m2m3, M = m1+m2+m3 and vk is the speed of the kth particle. To
establish a connection with a triangle billiard, we need three pairs of basis vectors,
each having two components – one parallel to a side of the triangle and the other
parallel to the corresponding altitude. These pairs will be related to each other by
a rotation by an angle of the triangle.

Define

U1 = (v2 − v3)
√

m2m3

(m2 + m3)M
;

V1 = v1

√
m1

m2 + m3
, (9)

and similar cyclic relations for U2, V2 and U3, V3. When particles 2 and 3 collide,
U1 → −U1 and V1 remains unchanged. The kinetic energy can be written as

T =
M

2

∑

k

(U2
k + V 2

k ). (10)
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We note that (Uk, Vk) form three pairs, each defining a vector

~W = Ukêk + Vkf̂k, (11)

the norm of which is given by

W 2 =
Π

M2

∑

k

v2
k

mk
. (12)

As desired, (ê2, f̂2) and (ê1, f̂1) are related to each other by rotation:
[

ê2

f̂2

]
=

[ − cos θ3 − sin θ3

sin θ3 − cos θ3

] [
ê1

f̂1

]
, (13)

where θk is given by

mk cot θk =

√
Π
M

= M cot θ1 cot θ2 cot θ3. (14)

With these transformations, motion of three particles on a circle is mapped to a
uniform motion in a triangle billiard. Collision of two particles is equivalent to a
particle striking a side of the triangle in accordance with Snell’s law.

The billiard is an acute triangle with interior angles θk, sides `k parallel to f̂k,
and altitudes ak parallel to êk. An interior point is given by trilinear coordinates,
the distances dk from each side [3] which are related to xk by the relations

x1 = d1

√
(m2 + m3)M

m2m3
and similar relations for x2 and x3. (15)

For obtuse triangles, we have to work with negative masses, but everything works
well as far as the map is concerned. For particles 1 and 3, if the masses are −m1

and −m3 and m2 − m1 − m3 > 0. The norm of ~W will be negative, so it seems
unphysical. But the connection still works with angles of the triangle given by

tan θk = (−1)k+1mk

√
M

Π
. (16)

Here θ2 > π/2.
Now, combining (5) and (15), we obtain the ground state eigenfunction of an

arbitrary acute triangle with CSM potential. Figure 1 shows the contour plot for
angles obtained by choosing masses 1, 2 and 3, α equal to 1; it is an irrational
triangle billiard. The CSM potential remains finite and smooth throughout the
triangle and rises to infinity, thus providing a barrier for the particle to escape.

In figure 2, one can see the level curves of the potential and the contour plot of
the eigenfunction together, just to facilitate a more visual impression of the result.

The above result is only valid for acute triangles and not for obtuse ones. Thus,
as observed in [2], obtuse triangles are more complicated somehow than the acute
triangles.
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Figure 1. Contour plot of the ground state of an irrational triangle billiard
with a CSM potential in the d1–d2 plane. Two of the interior angles are
cot−1 1

2
(∼ 63.4095...degrees) and cot−1 1

3
(∼ 71.5365...degrees).

0.3 0.5 0.7 0.9 1.1 1.3 1.5
0.3

0.5

0.7

0.9

1.1

1.3

1.5

d
2

d 3

Figure 2. Level curves of the potential and the contours of the eigenfunction
are shown together in d2–d3 plane.

The Rabouw–Ruijgrok map [2] reduces to that found by Onsager [4] connecting
the dynamics of two particles of masses m1 and m2 on a line segment to a right
triangle billiard.
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We note that there have been studies on the ground state of polygonal systems
in the past. Ground state energy of a particle in an n-sided regular polygon was
estimated as an expansion in 1/n [5]. For the same system, a sharper result was
obtained [6] by means of conformal mapping from the circle, which provided with
an expansion parameter for an approximate evaluation of the lowest eigenvalue
and eigenvector. In this paper, the result is exact, and it is for an arbitrary acute
triangle. It has recently been shown that the solution of Helmholtz equation can be
found for an N -simplex by relating it to (N +1)-particle hard point boson problem
on a circle [7]. The result presented here leaves us with a hope that the solution
of three dissimilar point particles on a circle will lead us to the solution for an
arbitrary triangle billiard. This is an outstanding open problem, in addition to
finding analytically exact, complete solutions for a fully chaotic system. It would
be good to recall that, surprisingly, first few energy levels and eigenfunctions were
found analytically in closed form for a class of chaotic systems some years ago [8].
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