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Abstract. The correlation dimension D2 and correlation entropy K> are both important
quantifiers in nonlinear time series analysis. However, use of Dy has been more common
compared to K> as a discriminating measure. One reason for this is that Ds is a static
measure and can be easily evaluated from a time series. However, in many cases, especially
those involving coloured noise, K> is regarded as a more useful measure. Here we present
an efficient algorithmic scheme to compute K> directly from a time series data and show
that K5 can be used as a more effective measure compared to D> for analysing practical
time series involving coloured noise.
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1. Introduction

Nonlinear time series analysis is the most effective link between chaos theory and
the real world. It has now been realized that detecting nontrivial structures in ex-
perimental time series requires a succession of tests using various measures. Though
a number of important nonlinearity measures have been identified to analyse time
series data, the most important among them are the correlation dimension Ds and
the correlation entropy K. While the former is a static measure characterizing the
structure of the chaotic attractor, the latter is a dynamic measure and represents
the rate at which information needs to be created as the chaotic system evolves
in time [1]. This is because, due to the sensitivity to initial conditions in chaotic
systems, as the orbits evolve, initially insignificant bits in the specification of initial
conditions eventually become significant as time tends to oco. Hence K5 is also
closely related to the Lyapunov exponent [LE] [2], which measures the exponential
rate of divergence of nearby trajectories in phase space.
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Traditionally, K5 has been much less popular compared to Dy as a discrimi-
nating statistic in analysing time series in practice. This is because their values
are generally much harder to determine [1] and requires much more number of
data points for a reasonable estimate, compared to that of Dy. However, K5 has
a significant and more relevant status, especially in the context of coloured noise
contamination, as indicated by many authors [3-5]. The standard method for both
is the Grassberger—Proccacia (GP) algorithm [6,7], even though a few other meth-
ods have also been proposed in the literature to compute Dy [8,9] and K5 [10] for
specific data sets. The technique uses the scalar time series to reconstruct the dy-
namics in an embedding space of dimension M using delay coordinates scanned at
a suitable time delay 7.

But a major difficulty in implementing this procedure is that, the scaling region
in the correlation sum for the computation of Dy and K5 has to be identified
subjectively, as discussed in detail in the next section. The problem becomes worse
in the case of experimental time series due to various factors such as the limitation
in the number of data resulting in edge effects, presence of noise etc. Though a
number of improvements have been suggested, especially for the computation of
Dy [11-13], the problem of subjectivity of the scaling region still remained. To
overcome this, we have recently proposed and implemented a modification in the
computational scheme for GP algorithm to compute Ds, by identifying the scaling
region algorithmically [14]. We have also shown that the method can be used for any
arbitrary time series and is most suitable for hypothesis testing. A major purpose
of this paper is to show that this scheme can be extended for the computation
of K5 as well and it provides a more effective use of Ky for analysing time series
involving coloured noise. The scheme is first verified using standard synthetic data
sets and it is then applied to analyse experimental time series. Section 2 discusses
the computational scheme in detail. The numerical results are presented in §3 and
the conclusions are drawn in §4.

2. Computation of entropy

In this section, we present the essential details of our algorithmic scheme required
for this analysis. A more complete discussion regarding the computation of Dy is
presented elsewhere [14]. The GP algorithm aims at creating an artificial space
of dimension M with delay vectors constructed by splitting a discretely sampled
scalar time series s(t;) with delay time 7 as

T = [s(t:), s(ti + 1), ..., s(t; + (M — 1)71)]. (1)

The correlation sum is the average number of points with the relative distance
within R from a particular (ith) data point,

N
. 1 - o ~
pi(R) = Nllinoo E . ;i‘H(R— |75 — wy|)7 (2)
J=L07F

where N, is the total number of reconstructed vectors and H is the Heaviside step
function. Averaging this quantity over N, randomly selected & or centres gives the
correlation function
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Figure 1. K>(M) values of six low-dimensional chaotic systems, each con-
taining 30,000 data points. The saturated values are given in table 1.

Ne
Car(R) = - 3 pi(R). ®)

As M increases, one expects Cjr(R) to decrease for a fixed value of R. This is
because, the computation of Cps(R) involves how many trajectory points in the
embedding space stay within the distance R of each other. As M increases, the
lengths of the trajectory segments being compared are increased and K5 measures
the rate of change of this. Hence K5 can be defined by the relation

CA[(R) 0.6 G_MKzAt7 (4)

where At is the time step between successive values in the time series. From above,
a formal expression for Ky can be written as

KyAt = }l%im lim lim (—logCp(R)/M). (5)

—0 M —o00 N—oo

Alternately, K5 can also be obtained as

KQAtE im lim I\Pm log(C]V[(R)/CA1+1(R)). (6)

1
R—0M—

To compute K», one has to identify a linear part in the log Cas(R) vs. log R plot
for each M, called the scaling region, which is usually done by the visual inspection
of the correlation sum. But in our computational scheme, this is avoided and
instead, the scaling region is fixed algorithmically. For this, a maximum value of
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Figure 2. K>(M) values for four data sets obtained by adding (a) 10%, (b)
20%, (c) 50% and (d) 100% of white noise to the data from Rossler system.
The value of K2 and error bar increase with the increase in noise.

R, Ryax and a minimum value of R, Ry, are computed for each M using some
criteria based on the algorithm itself and the region between them is taken as the
scaling region. The criterion for Ry,ax is that the number of available centres are at
least N,,/100 and Ry, is decided by the condition that on the average at least ten
data points are considered per centre [14]. For a fixed M value, K5 is calculated
for different values of R in the scaling region using eq. (6) and the average is
calculated. The error in Ko(M) is also estimated as the mean standard deviation
over this average value. There often exists a critical embedding dimension M., for
which Ry &= Rmax, S0 that significant results can be obtained only for M < M,,.
Hence the computations are done for each value of M starting from M = 2 to
M = M,,.

3. Numerical results

To illustrate our scheme, we first analyse synthetic time series generated from six
well-known low-dimensional chaotic systems. For all the analysis in this section,
30,000 data points are used. Figure 1 shows the Ko(M) values computed for the six
standard chaotic systems. In all cases, we get a well saturated value for K3(M). The
saturated values K5*' are given in table 1 along with the corresponding standard
values for comparison.

For the scheme to be useful in analysing real world data, it should effectively
compute K5 values of time series contaminated by noise. In order to show this, we
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Table 1. K5* values of six low-dimensional chaotic systems obtained using
the scheme prescribed in this work along with the standard K5** values given

in literature.

System Computed K5** Standard K35**
Rossler attractor
(a=b=0.2,c=17.8) 1.07+0.13 1.04 £+ 0.02
Lorenz attractor
(c =10,r =28,b=8/3) 1.3154+0.18 1.327 £ 0.03
Ueda attractor
(k=0.05,A=1.5) 1.92+0.24 1.68 +£0.13
Henon map
(a=1.4,6=0.3) 0.39 £0.04 0.417 £+ 0.06
Lozi map
(a=1.7,6=0.5) 0.375 + 0.032 0.39 +0.03
Cat map 0.965 + 0.006 0.98 £ 0.02

15 |- T ]

10 [ - } B

Lot P

(a) t . (b) .
LY [

N ‘H}:w}:w}:u}‘”‘H}:H}‘H}H:T:w

15 - - E b

10 [ } - B

5 [ - B

B Lot |
1Hm”mH?‘?QHFZHm”m”mi“iwf
2 4 6 8 2 4 6 8
M

Figure 3. Same as figure 2, but with red noise added instead of white noise.
Note that, in contrast to the previous figure, K2 decreases with M as the level
of red noise increases.

construct data sets by adding different percentages of white and coloured noise to
the data from Rossler system. The power in a noise process varies in general as
1/f%, where the value of o determines the type of noise. For white noise, « = 0
and for coloured noise, it varies from 1.0 to 2.0. We choose coloured noise with
a = 2.0, which is called the red noise. For pure white noise, we expect Ko — o0,

Pramana — J. Phys., Vol. 72, No. 2, February 2009 329



330

K P Harikrishnan, R Misra and G Ambika

T T

- (@) )
N A e e e e e

o T ]

2 + + 1

1; H 4 |

P () T (d) ]

b T e L

2 4 6 8 2 4 6 8
M

Figure 4. A magnified view of the region from M = 5 to 8 of figure 3, which

clearly shows the dependence of K5*' on the level of red noise.
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Figure 5. Dy(M) values of the four data sets analysed in figure 3, involving
different percentages of red noise. The saturated D2 values are very close even
with widely varying amounts of coloured noise.
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Figure 6. K2(M) values of four data sets corresponding to different temporal
states of the black hole system GRS 19154105. The values are computed
per sec from 30,000 data points. Note that while § and [ indicate chaotic
behaviour, k clearly shows coloured noise contamination and x is more like a
white noise.

whereas, for coloured noise Ko — 0 as M — oo [15], since it is a time-correlated
random process.

Figure 2 shows the results of applying our scheme to four data sets with (a) 10%,
(b) 20%, (c) 50% and (d) 100% of white noise added, whereas figure 3 shows the
same results, but with red noise. As expected, K5*' increases as the level of white
noise contamination increases, and K5** — 0 with the increase in red noise. This
is more clearly seen in figure 4 where a blow up of the region from M = 5 to 8 of
figure 3 is shown. Moreover, the error bar in figure 2 also increases proportional to
the white noise contamination. For a noise level of 100% in figure 2d, the scheme
computes Ky only up to a maximum M value of M. = 6. It shows that beyond
M = 6, there is no reasonable scaling region for the data.

In contrast, we show in figure 5, the D5 values of the same data sets given in
figure 3, having different percentages of coloured noise contamination. It is clear
that, practically it is impossible to infer coloured noise contamination by computing
Do alone.

Finally, we analyse a few data sets from an astrophysical X-ray source, the black
hole system GRS 1915+105. All data sets contain continuous data streams with
N = 30,000. Temporal behaviour of this black hole system has been classified into
12 different states and more details regarding this can be found elsewhere [16]. Here
we choose data from four representative states, viz. 8, 8, k and x, and the result of
applying our scheme is shown in figure 6. Comparing this with the previous results
on synthetic data added with noise, one finds that the states # and 3 saturate much
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Figure 7. Dy(M) values of the four states of the black hole system GRS
19154105, whose K2(M) values are shown in figure 6.

like a chaotic system. The behaviour of k indicates coloured noise contamination
whereas x can be identified as a white noise with much higher values of K5 and
computed only up to M = 5. Though these results agree with our previous analysis
using Dy [16], the effect of coloured noise on the x state was not evident there, as
can be explicitly seen from figure 7, where D5 values of these states computed using
our code are shown. This confirms the importance of K5 as a measure in analysing
time series involving coloured noise.

4. Conclusion

In this paper, we show that K5 can be effectively used for the analysis of time
series involving coloured noise. For this, we introduce an algorithmic scheme for
computing Ky directly from a time series data. It is based on the GP algorithm and
is an extention of the scheme we proposed earlier [14] for nonsubjective computation
of Ds. The scheme is tested with a large number of standard chaotic systems and
is found to give reliable results with respect to white as well as coloured noise
contamination. Moreover, it can be applied to any arbitrary time series and provides
an error estimate on the value of K§* obtained. As examples from the real world,
analysis of four astrophysical data sets have also been carried out.

Both D5 and K5 are very important measures to test nonlinearity in a time series
data. But D is more often chosen as the test statistic for hypothesis testing. This
is because, computation of D5 is much easier compared to that of K5 and more
importantly requires only less number of data points than for K5. But as shown by
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Radaelli et al [4], K2 could be a more decisive measure for some data sets, especially
those involving coloured noise. This is because, while coloured noise gives a well-
saturated value for Dy as a function of M [17] just like a chaotic system, the value
of Ko — 0 as M — oo. But in order to use K> as a test statistic, it is important
to have a nonsubjective approach for its computation so that, the same conditions
are maintained in the algorithm for both the data and the surrogates, as is done in
our scheme.

Another advantage of our computational scheme is that it can compute both Ds
and K efficiently from a time series, thus enabling a more complete analysis of
the data using the two complementary measures of low-dimensional chaos. More-
over, surrogate analysis can be performed with both Dy and K5 as discriminating
statistic, which is essential to confirm the presence of low-dimensional chaos. The
scheme presented here could be useful in this regard.
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