
PRAMANA c© Indian Academy of Sciences Vol. 70, No. 1
— journal of January 2008

physics pp. 113–120

π−-12C elastic scattering above the ∆ resonance
using diffraction model

M R ARAFAH
Department of Physics, Faculty of Sciences, King Abdulaziz University, Jeddah,
Saudi Arabia
E-mail: marafah@kau.edu.sa

MS received 31 January 2007; revised 28 June 2007; accepted 7 August 2007

Abstract. Phenomenological analysis of the π−-12C elastic scattering differential cross-
section at 400, 486, 500, 584, 663, 672 and 766 MeV is presented. The analysis is made in
the diffraction model framework using the recently proposed parametrization of the phase-
shift function. Good description of the experimental data is achieved at all energies.
Microscopic interpretation of the parameters of the phase-shift function is provided in
terms of Helm’s model density parameters.
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1. Introduction

Over the past two decades or so, several microscopic studies of pion–nucleus elastic
scattering at incident pion energies above the ∆ resonance have appeared in the
literature [1–6]. These studies show that the first-order multiple scattering optical
potentials do not provide a satisfactory description of the empirical data and that
the conventional second-order corrections to the first-order theory are not helpful in
significantly improving the theoretical situation. Some phenomenological analyses
based on the optical model and the strong absorption model have also appeared
in the literature. For example, Hong and Kim [7] have used the conventional six-
parameter Wood–Saxon optical potential to obtain a satisfactory description of the
π−-12C elastic scattering data over a wide range of energies. On the other hand,
Choudhury and Scura [8] have applied McIntyre parametrization of the elastic S-
matrix element S` , to derive a closed expression for the elastic scattering amplitude
under the strong absorption approximation which they used to fit the π−-12C and
π−-40Ca elastic scattering data at 800 MeV/c.

In a recent article, Ahmad and Arafah [9] (hereafter to be referred to as I)
have examined Choudhury and Scura’s S`. They have found that this S` when
substituted in the exact partial wave expression of the scattering amplitude does
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not provide a satisfactory fit to the experimental data. This situation shows that
the strong absorption approximation as used by Choudhary and Scura [8] does not
work well in this case. Also, it suggests that some other parametrization for S`

should be used for the diffraction model analysis of the pion data. Following the
suggestion by McEvan, Cooper and Mackintosh (MCM) [10] that in the diffraction
model analysis of the elastic scattering data, the parametrization of S` should
better be based on some theory, the authors of ref. [9] proposed a parametrization
of S` which is based on the optical limit approximation of the Glauber theory [11].
The proposed parametrization which involves four adjustable parameters has been
shown to work exceedingly well for π-12C system at 800 MeV/c. In I, a microscopic
interpretation of the geometrical parameters of S` in terms of the modified harmonic
oscillator density parameters has also been provided.

This work is an extension of the study reported in I. Here we show that the
diffraction model phenomenology as proposed in I provides a very good discretion
of the π−-12C elastic scattering data over a wide range of energies from 400 to
766 MeV. Hence, it could be applied for obtaining analytic optical potential by
inversion in this energy range. This optical potential involves lesser number of
adjustable parameters than the conventional Wood–Saxon potential [7]. Further,
in I the geometrical parameters of the phase-shift function were related to the
parameters of the modified harmonics oscillator model density using the optical
limit approximation of the Glauber model and the zero-range approximation for
the πN interaction. This density model is of limited applicability as it is generally
used for lighter nuclei. Some other density models have also been used for 12C
which belong to the leptoderous class and are of wider applicability. One of them
is the Helms model in which the nuclear density is obtained by convoluting the
uniform spherical density of the radius R with the Gaussian density of variance σ.
This model which describes the two main features of the nuclear density namely,
the extension and the diffuseness in terms of the parameters R and σ respectively
has been used by Friedrich and Voegler [12] successfully to describe the nuclear
charge distribution over almost the whole mass spectrum.

Therefore, it would be interesting to establish some relationship between the
parameters of the phase-shift function and Helms model density parameters. This
is another modification of the present work.

2. Theoretical considerations

In this work the elastic scattering differential cross-section for π−-12C system is
calculated using the following partial wave expression for the elastic scattering
amplitude:

Fel(θ) = Fc(θ) +
i

2k

∞∑

`=0

(2` + 1)e2iσ` [1− S`]P`(cos θ), (1)

where Fc(θ) is the point Coulomb scattering amplitude, σ` is the point Coulomb
phase-shift, k is the c.m. momentum, P` (cos θ) is the Legendre polynomial and
S` is the elastic S-matrix element. Following I, we write S` as
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S` = S(b)eiδc(b)|kb=`+ 1
2
, (2)

where b is the impact parameter, S is the nuclear part of the S-matrix element, and
δc(b) is the difference between the phase-shift function of the Coulomb potential
due to the extended charge distribution of the target nucleus and the corresponding
point charge [9].

Next, we express S(b) in terms of the phase-shift function χ(b) as

S(b) = eiχ(b), (3)

and assume that

χ(b) = (cr + ici)(1 + c1b
2)e−c2b2 , (4)

where cr, ci, c1 and c2 are parameters. In I, a microscopic interpretation for the
above parametrization has been given using the zero-range Glauber optical limit
approximation [11] and the modified harmonic oscillator model target density dis-
tribution. Below, we give another interpretation using the Helm’s model for the
target density distribution. This alternative interpretation enables us to determine
the radius or extension parameter of the density distribution from the parameters
c1 and c2 of the parametrization (4).

In the optical limit approximation, the Glauber model phase-shift function for
the π-nucleus system may be expressed as [13]

χop(b) =
A

k

∫ ∞

0

dq qJ0(qb)F (q)f(q), (5)

where A is the target mass number, f(q) is the isospin averaged πN scattering
amplitude, F (q) is the target form factor and J0 is the Bessel function of zero
order. In writing eq. (5) it has been assumed that the neutron and proton density
distributions in the target are the same.

In the Helm’s model, the nuclear density is obtained by convoluting a uniform
density distribution of radius R with the normalized Gaussian density distribution
of variance σ (also called diffusion parameter). Accordingly, the Helm’s model form
factor is of the form [12]:

F (q) =
3

qR
j1(qR) e−σ2q2/2, (6)

where j1(qR) is the spherical Bessel function of order 1. The Helm’s model rms
radius rm is given by [12]

r2
m =

3
5
R2

[
1 + 5

( σ

R

)2
]

. (7)

With regard to the amplitude f(q), one may take the generally used Gaussian
parametrization [13]:

f(q) =
ikσt(1− iα)

4π
e−βq2/2, (8)
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where σt is the πN total cross-section, α is the ratio of real to imaginary parts of
the πN amplitude and β is the slope parameter.

With the Helm’s model F (q) as given by eq. (6) the optical phase-shift function
χop(b) can be evaluated only numerically. Therefore, we invoke some approximation
to obtain a closed expression for χop(b). Using the product representation of the
Bessel function [14], the form factor F (q) may be written as

F (q) =

[ ∞∏

i=1

(
1− q2R2

x2
i

)]
e
−σ2

2 q2
, (9)

where xis are the zeros of j1(x). Now, we approximate the above form factor as

F (q) ≈
(

1− q2R2

x2
1

)
e−(νR2+ σ2

2 )q2
, (10)

where x1(= 4.4934) is the first zero of the Bessel function and

ν = (0.1− 1/x2
1) = 0.0505. (11)

Expression (10) ensures that the approximate form factor has the same rms radius
and the first zero as the exact one. Thus the approximate form factor given by
eq. (10) correctly describes the low −q behavior of the Helm’s model form factor.
This is satisfying, since in expression (5) for χop(b), the main contribution to the
integral, because of the oscillatory nature of the Bessel function, comes from the
small q region. Therefore, it is hoped that the approximation (10) would give
reasonably good results for χop(b). Substitution of eq. (10) in eq. (5) gives

χop(b) =
Aσt(i + α)

8π

(D − Y )
D2

[
1 +

Y b2

4D(D − Y )

]
e−

b2
4D , (12)

where

D = (ν R2 + σ2/2) + β/2, (13)

Y =
R2

x2
1

. (14)

Comparing eqs (4) and (12), we find that the geometrical parameters c1 and c2 of
the diffraction model phenomenology are related to the density parameters as

c2 =
1

4D
(15)

and

c1 =
Y

4D(D − Y )
. (16)

Using eqs (13)–(16) the following relationships between the parameters c1 and c2

and the density parameters may be easily derived:
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R2 =
c1x

2
1

4c2(c1 + c2)
, (17)

σ2 + β = 2
(

1
4c2

− 0.0505R2

)
. (18)

Thus from the phenomenological parameters c1 and c2 one can determine the radius
parameter R using eq. (17). However, because of the appearance of β in eq. (18),
these parameters can be used to determine σ if either the zero-range approximation
holds good or β is precisely known.

3. Results and discussion

Using the parametrization of the phase-shift function as given by eq. (4) and
the expression (1) for the elastic scattering amplitude we fit the π−-12C elastic
scattering differential cross-section data at 400, 486, 500, 584, 663, 673 and 766
MeV by varying the parameters cr, ci, c1 and c2. The quantity S`(b) as given by
eq. (2) is evaluated using the same expression for S`(b) as given in I. The results
of the fit are shown in figures 1a and 1b. The corresponding χ2 and parameter
values are given in table 1. It is seen that in general, reasonably satisfactory fits to
the experimental data are achieved. However, at 400 MeV although there is fairly
good qualitative agreement with the data, yet the χ2 value is fairly large. This is
mainly due to wiggles in the experimental values in the region of the minimum and
large disagreement between the calculated and experimental values in the extreme
forward angle region. In the last two columns of table 1 we give the Helm’s model
radius parameter R and the effective diffuseness σ2 + β as calculated from eqs (17)
and (18). The R values in the table compare reasonably well with the value 2.44 fm
as extracted from the study of the charge density distribution of 12C nucleus [12].
Here, it may be added that in multiparameter fitting of the elastic scattering angular
distribution the value of a parameter depends upon several factors such as the
quality of the experimental data, momentum transfer covered by the experimental
values, correlation with other parameters, χ2-value achieved, etc. From table 1, it

Table 1. Parameter values of the phase-shift function for π−-12C system.

Energy c1 c2 σ2 + β R
(MeV) cr ci (fm−2) (fm−2) χ2 (fm2) (fm)

400 1.1209 0.8807 0.3853 0.3719 29.15 0.65 2.63
486 0.8383 0.6101 0.5291 0.4587 2.58 0.50 2.43
500 0.6967 0.9322 0.3656 0.3884 10.20 0.65 2.51
584 0.6925 0.8273 0.4171 0.4320 1.48 0.58 2.40
663 0.2832 1.0961 0.4351 0.4210 1.52 0.57 2.47
672.5 0.2683 1.6459 0.2469 0.3960 0.8 0.80 1.78
766.2 0.144 1.257 0.307 0.374 1.00 0.72 2.47
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Figure 1. (a) π−-12C elastic scattering differential cross-sections. The solid
curves show the results of our fit with the parameter values given in table 1.
The experimental data have been taken from refs [15] and [16].

is seen that at 400 and 500 MeV the χ2-value are relatively large which perhaps are
due to the large wiggles in the experimental data around the region of the minimum
as mentioned earlier (figure 1a). Therefore, the extracted values of R at these two
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Figure 1. (b) Same as in figure 1a.

energies are expected to be correct only qualitatively. At the incident pion energies
486, 584, 663 and 766.2 MeV where the fits are relatively much better the values of
R as obtained from the fittings are in better agreement with the electron scattering
value. However, at 672.5 MeV the value of R is not in good agreement with the
electron scattering value, though the χ2-value in this case is the smallest. This is
because the χ2 minimum in this case is reached with a fairly large value of the
effective diffuseness (σ2 + β) as may be seen from the table. Such a correlation
between the radius parameter and the surface diffuseness is commonly observed in
the optical model fittings.

Coming to the effective diffuseness σ2 + β in table 1, it is seen that the values
are in reasonably fair agreement with the charge density diffuseness parameter
σ2 ≈ 0.65 fm2 as obtained from the analysis of the 12C charge density distribution
[12]. Here, it may be mentioned that the diffuseness σ2 for the point nucleon density
distribution is related with σ2

ch as σ2 = σ2
ch − r2

ch/3 where rch is the charge rms
radius of proton.
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Thus within the diffraction model framework, there are two main advantages
of the presently used parametrization of the elastic S-matrix element. First, its
geometrical parameters c1 and c2 are simply related to the extension and diffuse-
ness parameters R and σ of the nucleon density distribution. This is not the case
with the generally used McIntyre parametrization of the S-matrix. For example,
the diffraction model radius and diffuseness parameters of ref. [8] have no explicit
relationship with the radius and the diffuseness parameters of the nucleon density
distribution. Second, as discussed at length in I, our parametrization of S-matrix
element may be used to obtain a closed expression for the optical potential by
the method of inversion. It is reasonable to hope that this inversion optical po-
tential which involves only four adjustable parameters is more reliable than the
conventional six-parameter phenomenological Woods–Saxon potential to be used
for DWBA type calculation.
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