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Abstract. We discuss β-equilibrated and charge neutral matter involving hyperons and
K̄ condensates within relativistic models. It is observed that populations of baryons are
strongly affected by the presence of antikaon condensates. Also, the equation of state
including K̄ condensates becomes softer resulting in a smaller maximum mass neutron
star.
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1. Introduction

There is a growing interplay between the physics of dense matter in relativistic
heavy-ion collisions and neutron stars [1]. Though quantum chromodynamics pre-
dicts a very rich phase structure of dense matter, we can only probe a small region
of it in the laboratories. Relativistic heavy-ion experiments at CERN and BNL
produce a hot (a few hundreds of MeV) and dense matter (a few times the nor-
mal nuclear matter density) whereas the cold and dense matter relevant to neutron
stars cannot be produced in a laboratory. The study of dense matter in heavy-
ion collisions reveals many new and interesting results such as the modifications of
hadron properties in dense medium, the properties of strange matter including hy-
perons and (anti)kaons and the formation of quark-gluon plasma. These empirical
information from heavy-ion collisions may be useful in understanding dense matter
in neutron star interior. In addition, satellite-based observatories such as Hubble
space telescope and Chandra X-ray observatory are pouring in very exciting data
on compact stars. Measurements of masses and radii of compact stars from var-
ious observations might constrain the composition and equation of state (EoS) of
neutron star matter.

Neutron star matter encompasses a wide range of densities, from the density
of iron nucleus at the surface of the star to several times normal nuclear matter
density in the core. The temperature of a neutron star is a few MeV whereas the
baryon chemical potential in its interior is a few hundreds of MeV. That is why
neutron star matter is called the cold and dense matter. As chemical potentials of
baryons and leptons increase with density in the core, exotic forms of matter such
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as hyperons, Bose–Einstein condensate of antikaons and quarks may appear there
[2].

In this article, we discuss the composition and EoS of neutron star matter in-
volving Bose–Einstein condensates of antikaons within relativistic models. Also,
the structures of non-rotating neutron stars are calculated using this EoS.

2. Hadrons in cold and dense medium

At normal nuclear matter density, neutron star matter mainly consists of neutrons,
protons and electrons. The particle population is so arranged as to attain a min-
imum energy configuration maintaining electrical charge neutrality and chemical
equilibrium. At higher baryon density, hyperon formation becomes energetically
favorable in neutron star interior as the total energy and pressure of the system are
lowered by sharing baryon number among several baryon species.

In compact star interior, hyperons maintain chemical equilibrium through weak
processes. The generalised β-decay processes may be written in the form B1 →
B2 + l + ν̄l and B2 + l → B1 + νl where B1 and B2 are baryons and l is a lepton.
Therefore, the generic equation for chemical equilibrium condition is

µi = biµn − qiµe, (1)

where µn, µe and µi are respectively the chemical potentials of neutrons, elec-
trons and ith baryon and bi and qi are baryon and electric charge of ith baryon
respectively. The above equation implies that there are two independent chemical
potentials µn and µe corresponding to two conserved charges, i.e. baryon number
and electric charge.

We adopt a relativistic field theoretical model to describe the pure hadronic mat-
ter [3]. The constituents of matter are n, p, Λ,Σ+,Σ−, Σ0, Ξ−,Ξ0 of the baryon octet
and electrons and muons. In this model, baryon–baryon interaction is mediated by
the exchange of scalar and vector mesons and for hyperon–hyperon interaction, two
additional hidden-strangeness mesons – scalar meson f0(975) (denoted hereafter as
σ∗) and the vector meson φ(1020) [4] are incorporated. Therefore, the Lagrangian
density for the pure hadronic phase is given by

LB =
∑

B

Ψ̄B (iγµ∂µ −mB + gσBσ − gωBγµωµ − gρBγµtB · ρµ)ΨB

+
1
2

(
∂µσ∂µσ −m2

σσ2
)− U(σ)

−1
4
ωµνωµν +

1
2
m2

ωωµωµ − 1
4
ρµν · ρµν +

1
2
m2

ρρµ · ρµ + LY Y . (2)

The isospin multiplets for baryons B = N , Λ, Σ and Ξ are represented by the Dirac
spinor ΨB with vacuum baryon mass mB , isospin operator tB and ωµν and ρµν are
field strength tensors. The scalar self-interaction term [5]

U(σ) =
1
3
g2σ

3 +
1
4
g3σ

4. (3)
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The Lagrangian density for hyperon–hyperon interaction (LY Y ) is given by

LY Y =
∑

B

Ψ̄B (gσ∗Bσ∗ − gφBγµφµ)ΨB

+
1
2

(
∂µσ∗∂µσ∗ −m2

σ∗σ
∗2)− 1

4
φµνφµν +

1
2
m2

φφµφµ. (4)

We perform this calculation in the mean-field approximation [6]. The mean values
for the corresponding meson fields are denoted by σ, σ∗, ω0, ρ03 and φ0. Therefore,
we replace meson fields with their expectation values and meson field equations
become

m2
σσ = −∂U

∂σ
+

∑

B

gσBns
B , (5)

m2
σ∗σ

∗ =
∑

B

gσ∗Bns
B , (6)

m2
ωω0 =

∑

B

gωBnB , (7)

m2
φφ0 =

∑

B

gφBnB , (8)

m2
ρρ03 =

∑

B

gρBI3BnB . (9)

The scalar density

nS
B =

2JB + 1
2π2

∫ kFB

0

m∗
B

(k2 + m∗2
B )1/2

k2 dk, (10)

and the baryon number density

nB = (2JB + 1)
k3
FB

6π2
, (11)

where kFB
is the Fermi momentum, JB is the spin, and I3B is the isospin projection.

Effective mass and chemical potential of baryon B are m∗
B = mB−gσBσ−gσ∗Bσ∗

and µB = (k2
FB

+ m∗2
B )1/2 + gωBω0 + gφBφ0 + I3BgρBρ03, respectively. In the pure

hadronic phase, the total charge density

Qh =
∑

B

qBnh
B − ne − nµ = 0, (12)

where nh
B is the number density of baryon B in the pure hadronic phase and ne

and nµ are charge densities of electrons and muons respectively.
Solving the equations of motion in the mean-field approximation along with ef-

fective baryon masses (m∗
i ) and equilibrium conditions we immediately compute
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the equation of state in the pure hadronic phase. The energy density (εh) is related
to the pressure (Ph) in this phase through the Gibbs–Duhem relation

Ph =
∑

i

µini − εh. (13)

Here µi and ni are the chemical potential and number density for the ith species.
Kaplan and Nelson [7] first showed in a chiral SU(3)L × SU(3)R model that

Bose–Einstein condensation of K− mesons could be possible in dense hadronic
matter. They argued that the strongly attractive K−–nucleon interaction might
lower the effective mass and the in-medium energy of K− mesons in dense matter.
The s-wave condensation sets in when the effective energy of K− mesons equals its
chemical potential. Recently, strongly attractive antikaon–nucleon interaction in-
medium has been extracted from the flow data of antikaons in heavy-ion collisions
[8].

In neutron star interior, strangeness changing processes such as

N ⇀↽ N + K̄, (14)

e− ⇀↽ K− + νe, (15)

may occur. Here N ≡ (n, p) and K̄ ≡ (K−, K̄0) denote the isospin doublets for
nucleons and antikaons, respectively. The threshold conditions for K̄ condensation

µK− = µn − µp = µe,

µK̄0 = 0. (16)

When the effective energy of K− mesons (ωK−) equals its chemical potential (µK−)
which, in turn, is µe, K− condensation sets in. Similarly, K̄0 condensation occurs
when ωK̄0 = µK̄0 = 0.

The pure antikaon condensed phase is composed of baryons of the baryon octet,
leptons and antikaons. In this phase, baryons are embedded in Bose–Einstein con-
densates. The (anti)kaon–baryon interaction is treated on the same footing as
baryon–baryon interaction. The Lagrangian density for (anti)kaons in the minimal
coupling scheme [3,9]

LK = D∗
µK̄DµK −m∗2

K K̄K, (17)

where the covariant derivative

Dµ = ∂µ + igωKωµ + igφKφµ + igρKτK · ρµ. (18)

The isospin doublet for kaons is denoted by K ≡ (K+,K0) and that for antikaons
is denoted by K̄ ≡ (K−, K̄0). The effective mass of (anti)kaons in this minimal
coupling scheme is given by

m∗
K = mK − gσKσ − gσ∗Kσ∗. (19)

The equation of motion for kaons is given by
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(
DµDµ + m∗2

K

)
K = 0. (20)

The s-wave (p = 0) dispersion relation for antikaons is

ωK̄ = m∗
K − gωKω0 − gφKφ0 + I3K̄gρKρ03, (21)

where the isospin projection I3K− = −1/2 for K− and I3K̄0 = 1/2 for K̄0.
The conserved current associated with (anti)kaons is derived by using

JK
µ =

(
K̄

∂L
∂µK̄

− ∂L
∂µK

K

)
. (22)

The density of antikaons is given by

nK̄ = −JK
0

= 2 (ωK̄ + gωKω0 + gφKφ0 − I3K̄gρKρ03)KK̄

= 2m∗
KKK̄. (23)

In the mean-field approximation, the meson field equations in the presence of an-
tikaons are

m2
σσ = −∂U

∂σ
+

∑

B

gσBns
B + gσK

∑

K̄

nK̄ , (24)

m2
σ∗σ

∗ =
∑

B

gσ∗Bns
B + gσ∗K

∑

K̄

nK̄ , (25)

m2
ωω0 =

∑

B

gωBnB − gωK

∑

K̄

nK̄ , (26)

m2
φφ0 =

∑

B

gφBnB − gφK

∑

K̄

nK̄ , (27)

m2
ρρ03 =

∑

B

gρBI3BnB + gρK

∑

K̄

I3K̄nK̄ . (28)

The total charge density in the antikaon condensed phase is

QK̄ =
∑

B

qBnK̄
B − nK̄ − ne − nµ = 0, (29)

where nK̄
B is the baryon number density in antikaon condensed phase.

The total energy density in the K̄ condensed phase consists of three terms, ε =
εB + εl + εK̄ ,

ε =
1
2
m2

σσ2 +
1
3
g2σ

3 +
1
4
g3σ

4 +
1
2
m2

σ∗σ
∗2

+
1
2
m2

ωω2
0 +

1
2
m2

φφ2
0 +

1
2
m2

ρρ
2
03

+
∑

B

2JB + 1
2π2

∫ kFB

0

(k2 + m∗2
B )1/2k2 dk

+
∑

l

1
π2

∫ KFl

0

(k2 + m2
l )

1/2k2 dk +
µ4

νe

8π2

+m∗
K (nK− + nK̄0) . (30)
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And the pressure is given by

P = −1
2
m2

σσ2 − 1
3
g2σ

3 − 1
4
g3σ

4

−1
2
m2

σ∗σ
∗2 +

1
2
m2

ωω2
0 +

1
2
m2

φφ2
0 +

1
2
m2

ρρ
2
03

+
1
3

∑

B

2JB + 1
2π2

∫ kFB

0

k4 dk

(k2 + m∗2
B )1/2

+
1
3

∑

l

1
π2

∫ KFl

0

k4 dk

(k2 + m2
l )1/2

+
µ4

νe

24π2
. (31)

The mixed phase of pure hadronic and antikaon condensed matter is described by
Gibbs phase equilibrium rules. Also, neutron star matter has two conserved charges
denoted by µn and µe. Therefore, the conditions of global charge neutrality and
baryon number conservation are imposed through the relations [10]

(1− χ)Qh + χQK̄ = 0, (32)

nB = (1− χ)nh
B + χnK̄

B , (33)

where χ is the volume fraction of K− condensed phase in the mixed phase. The
total energy density in the mixed phase is

ε = (1− χ)εh + χεK̄ . (34)

3. Composition and EoS of dense matter

In this model calculation, three distinct sets of coupling constants, meson–nucleon,
meson–hyperon and meson–kaon, are required. Meson–nucleon coupling constants
are generated by reproducing normal nuclear matter properties – saturation density
(n0 = 0.153 fm−3), binding energy, incompressibility and symmetry energy. Here
we exploit GM1 set for meson–nucleon coupling constants [3]. It is to be noted that
nucleons do not couple with σ∗ and φ.

Meson–hyperon coupling constants are determined from hypernuclei data and
quark model. The vector coupling constants for hyperons are obtained from SU(6)
symmetry as

1
2
gωΛ =

1
2
gωΣ = gωΞ =

1
3
gωN ,

1
2
gρΣ = gρΞ = gρN ; gρΛ = 0,

2gφΛ = 2gφΣ = gφΞ = −2
√

2
3

gωN . (35)

The scalar meson (σ) coupling to hyperons
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Figure 1. The number densities ni of various particles in β-equilibrated
hyperon matter including both K− and K̄0 condensates for GM1 set and
antikaon optical potential depth at normal nuclear matter density UK̄ = −160
MeV are plotted with baryon number density.

UN
Y (n0) = −gσY σ + gωY ω0, (36)

is determined from the knowledge of the potential depth of a hyperon in symmetric
nuclear matter using hypernuclei data. For Λ hyperon, this potential depth is −30
MeV and it is −18 MeV for Ξ hyperon. However, Σ hyperon potential depth is
+30 MeV.

The σ∗–Y coupling constants are calculated by fitting them to a well depth for

a hyperon in hyperon (Y ) matter at normal nuclear matter density, U
(Y
′
)

Y (n0) [11],

U
(Ξ)
Ξ (n0) = U

(Ξ)
Λ (n0) = 2U

(Λ)
Ξ (n0) = 2U

(Λ)
Λ (n0) = −40 MeV. (37)

The scalar meson–kaon coupling constant is estimated from the real part of K−

potential depth in normal nuclear matter density

UK̄ (n0) = −gσKσ − gωKω0, (38)

and the vector coupling constants from the quark model and isospin counting rule,

gωK =
1
3
gωN and gρK = gρN . (39)

A strongly attractive antikaon potential depth of UK̄ = −160 MeV has been used
for this calculation. The strange meson σ∗ and φ couplings with (anti)kaons are de-
termined from the decay of f0(975) and SU(6) symmetry relation respectively [4].

The abundances of various species in β-equilibrated matter containing baryons,
electrons, muons and K− and K̄0 mesons are shown in figure 1. We discuss the
role of K− and K̄0 condensation on the composition of β-equilibrated and charge
neutral matter. In the pure hadronic phase where local charge neutrality is imposed,
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abundances of nucleons, electrons and muons increase with density. Here, charge
neutrality is maintained among protons, electrons and muons. With the onset of
K− condensation, the mixed phase begins at 2.23n0. We find that Λ hyperon is
the first strange baryon to appear in the mixed phase at 2.51n0. The total baryon
density in the mixed phase is the sum of two contributions from hadronic and
antikaon condensed phases weighted with appropriated volume fractions. As soon
as K− condensate is formed, it rapidly grows with density and replaces electrons
and muons. Being bosons, K− mesons in the lowest energy state are energetically
more favorable to maintain charge neutrality than any other negatively charged
particles. Consequently, the proton density becomes equal to the density of K−

condensate. Also, the density of Λ hyperon increases with baryon density in the
mixed phase. On the other hand, the neutron density decreases in the mixed phase.
The reason behind it may be the creation of more protons in the presence of K−

condensate and also the growth of Λ hyperons at the expense of neutrons. The
mixed phase terminates at 4.0n0.

Immediately after the termination of the mixed phase, a second-order K̄0 con-
densation sets in ∼4.1n0. With the appearance of K̄0 condensate, neutron and
proton abundances become equal. The density of K̄0 condensate increases with
baryon density uninterruptedly and even becomes larger than the density of K−

condensate. As soon as negatively charged hyperons Ξ− and Σ− appear at higher
densities, the density of K− condensate is observed to fall drastically. This is
quite expected because it is energetically favorable for particles carrying conserved
baryon numbers to achieve charge neutrality in the system. Leptons or mesons
are no longer required for this sole purpose. Moreover, lepton number or meson
number is not conserved in the star. The system is dominated by K̄0 condensate
in the high density regime.

The equation of state, pressure (P ) vs. energy density (ε) for β-equilibrated
and charge neutral matter with and without antikaon condensates are exhibited in
figure 2. The lower solid line indicates the overall EoS with hyperons and antikaon
condensates whereas the EoS with hyperons and no condensate is exhibited by the
upper solid line. Two kinks in the lower solid curve mark the beginning and end of
the mixed phase where pure hadronic and K− condensed phase are in thermody-
namic equilibrium as dictated by Gibbs phase rules and global conservation laws.
These kinks lead to discontinuity in the velocity of sound. The overall EoS with K̄
condensates is softer compared with the EoS without condensates. Consequently,
the softer EoS gives rise to smaller maximum mass stars. The maximum mass of
the static neutron star sequence calculated with the EoS including K̄ condensates
is 1.57M¯ whereas that of hyperon EoS without K̄ condensates is 1.79M¯.

4. Summary

In this article, we discuss the formation of hyperons and Bose–Einstein condensates
of K̄ mesons in cold and dense matter relevant for neutron stars within relativistic
models. Here we consider a first-order K− condensation followed by a second-
order K̄0 condensation. The populations of neutrons, protons and hyperons are
strongly modified in the presence of both K− and K̄0 condensation. Also, antikaon
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Figure 2. The equation of state, pressure (P ) vs. energy density (ε), for
β-equilibrated hyperon matter with and without K̄ condensates.

condensates make the EoS softer compared to the EoS without condensates and
give rise to a smaller maximum mass neutron star.
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