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Abstract. The static structure factors of liquid alkali metals have been modelled at
temperatures close to their melting points and a few higher temperatures using the reverse
Monte Carlo (RMC) method. The positions of 5000 atoms in a box, with full periodicity,
were altered until the experimental diffraction data of the structure factor agrees with the
associated model structure factor within the errors. The model generated is then analysed.

The position of the first peak of the pair distribution function g(r) does not show
any significant temperature dependence and the mean bond lengths can be approximated
within an interval of 3.6–5.3 Å, 4.5–6.6 Å, 4.8–6.7 Å and 5.1–7.3 Å for Na, K, Rb and Cs
respectively. The cosine bond distributions show similar trend with the flattening up of
the first peak with increase in temperature. In addition, the coordination numbers of these
liquid metals are high due to the presence of non-covalent bonding between them. On the
average, we surmise that the coordination number decreases with increase in temperature.

Keywords. Reverse Monte Carlo simulation; simple liquid; alkali metals; structure of
liquid.
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1. Introduction

Liquid metals differ from other classes of liquids such as molten salts primarily
because of the presence of conduction electrons. Many elements show metallic be-
haviour in the liquid state, but their electronic band structures differ widely [1].
The structure factor of liquid metals is dominated by the repulsive core part of the
effective interionic potential despite the fact that their pair potential are of a long-
range oscillatory type [2]. The techniques of x-ray, neutron and electron diffractions
have been employed to determine the (static) structure of non-crystalline materials
using both transmission and reflection experiments. From the experimentally gen-
erated structural information, accurate peak positions and quantitative areas can
be obtained; a three-dimensional model of the structure cannot be built solely on
this intrinsically one-dimensional information [3].
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The reverse Monte Carlo (RMC) simulation [4] provides a way of obtaining
a three-dimensional picture of the disordered system from the intrinsically one-
dimensional structural information. Howe et al [5] described elemental liquid struc-
ture modelled from experimental diffraction data using the RMC method. Liquid
alkaline metals were investigated at particular temperatures, mainly at their melt-
ing points. Interesting results such as the pair distribution functions, g(r), bond
angle correlations B(cos θ), and the average coordination number, n, were obtained
from the RMC calculations. Nield et al [6] investigated the structural properties of
caesium at its melting point and a few higher temperatures (30–1650◦C).

The current calculations seek to give more detailed information on the structure
of these metals not only at their melting points as discussed in [5], but also at
temperatures higher than their melting points just as it was done for caesium [6].
This is done with a view of deducing information from such detailed calculations
within a unified framework.

The lay-out of the current paper is as follows: in §2, we give some details of the
reverse Monte Carlo (RMC) technique. We provide detailed information on the
current calculation in §3. We discuss our results in §4 and end with conclusions
in §5.

2. The reverse Monte Carlo (RMC) method

The structural behaviour regarding the positional correlation of particles has been
studied extensively by two distinct techniques of computer simulations, such as
the method of molecular dynamics (MD) and the metropolis Monte Carlo method
usually called Monte Carlo (MC) method [7,8]. These methods are based on an in-
teratomic potential and sometimes agree qualitatively with experiments depending
on how well the chosen interatomic potential describes the reference liquid.

It is not clear and obvious in many cases how to alter the interatomic potential.
This clearly limits the information that can be obtained from such modelling. The
reverse Monte Carlo (RMC) simulation [4] has proved to be a powerful tool for
modelling disordered structures [9,10]. The technique uses experimental data of
the structure factor (most frequently diffraction data) as input and generates three-
dimensional atomic configurations that are consistent with the experimental input
data.

This goal is achieved by moving atoms around as in the MC method but instead
of minimizing the energy, the squared differences between the experimental struc-
ture factor and the structure factor calculated from the computer configuration is
minimized. This is considered as an important advantage considering the difficulty
of obtaining energy (potential) for varying temperature, density (as used in the
present work) and pressure. It also provides non-uniform information about the
system, since all the data are fully utilized quantitatively rather than qualitatively.

The RMC technique provides a ground where many different sets or types of data
can be combined simultaneously. It is general and can be easily adapted to different
physical problems. The processes involved in RMC calculation are outlined below.
Firstly, one starts with an initial configuration of atoms with periodic boundary
conditions. This configuration is defined such that N atoms are placed in a box,
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normally cubic, with periodic boundary conditions, by which one means that the
box is surrounded by images of itself. For a cube of side L, the atomic number
density ρ is given by

ρ =
N

L3
. (1)

This must be chosen to coincide with the required density of the system. Secondly,
the radial distribution function for this old configuration is calculated using the
equation

gcalc.
0 (r) =

ncalc.
0 (r)

4πr2ρ∆r
, (2)

where ncalc.
0 is the number of atoms at a distance between r and r + ∆r from a

central atom, averaged over all atoms as centres. The configuration size L should be
sufficiently large that there are no correlations across the box, so that g(r > L

2 ) = 1.
g(r) is only calculated for r < L

2 and the nearest image convention is used to
determine the atomic separation. Next is the transformation to the total structure
factor using the Fourier transform:

Scalc.
0 (q) = 1 +

4πρ

q

∫ ∞

0

r(gcalc.
0 (r)− 1) sin qr dr, (3)

where q is the wave vector. The next process involves the calculation of the differ-
ence between the experimental structure factor configuration Sexpt.(q) and calcu-
lated structure factor configuration Scalc.

0 (q);

χ2
0 =

n∑

i=1

[Scalc.
0 (qi)− Sexpt.(qi)]2/σ2(qi), (4)

where the sum is over n experimental points and σ(qi) is a measure of experimental
error.

The fifth process involves moving an atom at random. This is followed by com-
puting the new radial distribution function gcalc.

n (r) and structure factor Scalc.
n (q)

such that

χ2
n =

n∑

i=1

[Scalc.
n (qi)− Sexpt.(qi)]2/σ2(qi). (5)

If χ2
n < χ2

0, the move is accepted and the new configuration becomes the old. On
the other hand if χ2

n > χ2
0, the move is accepted with probability exp[−(χ2

n−χ2
0)/2],

otherwise it is rejected. Finally we repeat from step in eq. (5). These steps are
repeated until χ2 is sufficiently small and oscillates around an equilibrium value.

At this point, the configuration for which Scalc.(qi) agrees with Sexpt.(qi) within
the limits of experimental error can be evaluated. This algorithm is usually mod-
ified slightly by the imposition of some constraints. The most commonly used
constraint is on the closest distance of approach of two atoms. Due to systematic
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errors in the experimental data and limited data range, the data would not forbid
some atoms from coming very close together. However, it is known that this is
physically unrealistic and so an excluded volume is defined. While this is a very
simple constraint on the structure, it is also very powerful since the imposition of
both excluded volume and a fixed density restricts possible configurations that are
consistent with the data.

3. RMC simulation and results

In this work, we have performed reverse Monte Carlo simulations for liquid alkali
metals using 5000 atoms in each case. In all cases, the atoms are randomly placed
in a cubic box but are allowed to move at a minimum distance apart, and the
corresponding experimental structure factors S(q) obtained from x-ray and neutron
diffraction studies were used simultaneously as input data for Na at 100◦C and
105◦C, for K at 65◦C and 70◦C and for Cs at 30◦C.

The x-ray diffraction data are taken from [2], while the neutron diffraction data
are taken from [11]. Table 1 shows the densities used in the modelling for all the
metals at different temperatures and was taken from [2].

The structure factor S(q) was modelled using a modified version of an original
code supplied by McGreevy et al [12] as described by the algorithm above. In all
cases, the RMCA was run choosing a value of σ = 0.01 in order to get a good fit for
the experimental data and also the values of the closest distance of approach were
varied until a physically realizable g(r) was obtained. We ensure that convergence
was reached in all cases. In other words, the simulation was run until the value

Table 1. Densities used in the current calculations [2].

Metal Temperature (◦C) ρ (g cm−3) ρ (Å−3)

Na 100 and 105 double fit 0.928 0.02430
200 0.903 0.02365
300 0.881 0.02307
550 0.823 0.02155

K 65 and 70 double fit 0.826 0.01270
105 0.819 0.01259
200 0.797 0.01225
450 0.741 0.01139

Rb 40 1.476 0.01040
100 1.448 0.01020
200 1.397 0.00984

Cs 30 double fit 1.838 0.00830
100 1.796 0.00810
200 1.739 0.00785

Li 190 0.512 0.04400

1088 Pramana – J. Phys., Vol. 65, No. 6, December 2005



Structural properties of low-density liquid alkali metals

of χ2 remains fairly constant. The static structure factor S(q), pair distribution
function g(r), coordination number, n, and the bond angle distribution B(cos θ)
were then determined from the final configuration.

4. Discussions

Analysis of these quantities gives more insight into the properties of the liquid alkali
metals at temperatures indicated in the figures. Essentially, the RMC allows us to
obtain more data from the diffraction data than what can be obtained purely from
experimental results.

Figures 1 and 2 show the fits to the experimental diffraction data of S(q) and the
difference between the modelled S(q) for molten Li, Na, K, Rb and Cs respectively
at various investigated temperatures. In all cases, agreement between the RMC
calculations and experimental values are excellent and this gives us confidence to
use the configuration files to obtain more information about the liquid metals under
investigation. The only cases for which there are notable differences between RMC
results for S(q) and diffraction data are for Na at 100 and 105◦C, for K at 70◦C
and mostly for Cs at 30◦C.

In those cases, we ascribe the differences to one or all of the following reasons:

1. The fits are to two sets of data based on two different diffraction techniques,
viz. x-ray and neutron diffraction.

2. Apart from Cs, there is a little temperature difference, about ±5◦C involved
and this might have had some slight influence on the densities used.

3. For Cs, unlike in the other two liquid metals, we observed that the two sets
of experimental data used were significantly different even in terms of the
locations of the peaks and troughs. We assume this to be the major reason
why there is more discrepancy for Cs even though the two experimental data
are taken at the same temperature of 30◦C.

Figure 1. Static structure factor S(q) for Li at the investigated temperature.
Diamonds represent S(q), from Waseda [2], solid lines passing through the
experimental values are from the current simulation, while the solid lines close
to −1 represent the difference between experimental and simulated values of
S(q)− 1.
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Figure 2. Static structure factor for Na, K, Cs and Rb at temperatures listed
in the figures. Symbols and lines are as in figure 1. Upper graphs represent
Na (on the left) and K while the lower graphs represent Cs (on the left) and
Rb.

The pair distribution function g(r) as derived from the RMC are shown in figures
3 and 4 for the set of cut-off distances finally adopted. The g(r)s obtained are all
physically realizable except for Li and K at 105◦C, 200◦C and 450◦C which show
pre-peak. Cut-off distance did not give a better result by altering the values of
the closest distance of approach. In fact, the values of the cut-off distance used
here gave the best results. The pre-peaks are presumably indicative of slight errors
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Figure 3. The g(r) as obtained from RMC for liquid Li at 190◦C.

in the experimental data. Nevertheless, we do not expect such errors to have any
significant effect on our conclusions.

Table 2 gives the values of rp, the position of the first peak, rc, the cut-off
distance, and rm, the position of the first minimum of the pair distribution function
g(r). For Na, the values for rc, rp and rm are fairly constant despite the significant
variation in temperature.

The presence of a non-significant change in rp suggests that the nature of the
metallic bonding remains the same with increase in temperature. For K, rc varies
significantly with temperature but rp is also relatively constant suggesting that the
constant nature of the metallic bonding, rm, slightly varies. Rb shows a decrease
in rc as temperature increases and fairly constant rp and rm. Cs shows the same
trend as Rb except that rp increases slightly with temperature.

Table 2. Table showing rc, rp and rm of the pair distribution function, g(r).

Metal Temperature (◦C) rc (Å) rp (Å) rm (Å)

Na 100 and 105 double fit 2.8 3.6 5.2
200 2.9 3.7 5.1
300 2.8 3.7 5.3
550 2.8 3.6 5.3

K 65 and 70 double fit 3.6 4.6 6.5
105 2.8 4.5 6.3
200 2.8 4.6 6.5
450 2.5 4.6 6.6

Rb 40 3.8 4.8 6.6
100 3.6 5.0 6.7
200 3.5 5.0 6.6

Cs 30 double fit 4.0 5.1 7.2
100 3.8 5.2 7.2
200 3.7 5.4 7.3

Li 190 1.8 2.9 4.0
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Figure 4. The g(r) as obtained from RMC for liquid Na, K, Rb and Cs at
indicated temperatures. The upper graphs represent Na (on the left) and K,
while the lower graphs represent Rb (on the left) and Cs.

Li, even though looks simple, is a very complex liquid. It differs from other alkali
metals because p states are absent from its core, and this implies that electron–ion
interactions are quite strong. Furthermore, one could talk about state mixing effect
which might arise from the proximity of s and p valence electron states [13]. It was
considered only to see its characteristic structural properties when compared with
other alkali metals. In general, as temperature increases, the height of the first peak
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Figure 5. Distribution of the cosine of the bond angles, B(cos θ) for liquid
Li at 190◦C.

in g(r) decreases and the height of peaks after the first maximum also decreases in
all the metals at their different temperatures.

Closer observation also shows that there are some unusual spikes at the first peaks
of g(r)s for the highest temperature in all the metals. As discussed in [6], RMC
modelling of expanded Cs, rp and rm of g(r) are fairly constant, with rp = 5.5 Å
and rm = 7.5 Å (The rm at the highest temperature - 1650◦C is 7.8 Å.) Simply, it
means that the metallic bond has a mean length of 5.5 Å and a maximum length of
7.5 Å. Therefore Na, K, Rb, and Cs can be said to have their metallic bond lengths
approximately within the range of 3.6–5.3 Å, 4.5–6.6 Å, 4.8–6.7 Å and 5.1–7.3 Å
respectively.

Figures 5 and 6 show the distribution of the cosine of the bond angle, B(cos θ),
for Li, Na, K, Rb and Cs respectively. This is defined as the probability of two
neighbours within rm from a central atom forming an angle θ with the central
atom. All the metals show the same variations and have two peaks. As tempera-
ture increases, the first peak flattens out, for example in Na at 550◦C, it is almost
structureless. This shows a distortion in the body-centred cubic (bcc) crystal struc-
ture of these metals at their melting points and temperatures above their melting
points.

The distributions of the number of nearest neighbours of an atom at a distance
less than a certain value from the reference atom for all the metals at various
temperatures of interest were also considered. Here, the distance was taken to be
the value corresponding to the value of the position of the first minimum, rm.

The average coordination number, n, at those temperatures for all the metals was
obtained from the calculated atomic configurations. Table 3 shows the temperature
variation of the average coordination number for the molten metals as obtained
from RMC. The average coordination numbers are large due to the supposed non-
covalent bonding between them. There is a decrease in the average coordination
number as the temperature increases.

This should be expected because as the temperature increases, the nearest neigh-
bours of a central atom move further apart thereby causing a decrease in the average
coordination number of the central atom.
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Figure 6. Distribution of the cosine of the bond angles for liquid Na, K, Rb
and Cs at indicated temperatures. The upper graphs represent Na (on the
left) and K while the lower graphs represent Rb (on the left) and Cs.

It was established for expanded caesium [6] that the average coordination num-
ber varies directly with density. However, the table also shows slight anomaly
in the temperature–average coordination number variation at some temperatures.
This probably is due to some errors in the experimental data used for the current
calculations at those temperatures.

Our results show a general trend that the average number of nearest neighbours
decreases when the density decreases and this is in agreement with those obtained
from first principle MD and classical MD simulations [14,15].
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Table 3. Table showing the temperature variation of the average coordination
number for the liquid alkali metals as obtained from RMC.

Metal Temperature (◦C) Average coordination
number (n)

Na 100 and 105 double fit 13.6700
200 12.8650
300 13.5240
550 12.6312

K 65 and 70 double fit 13.9068
105 13.0812
200 13.5076
450 12.9240

Rb 40 12.6972
100 12.7692
200 11.9132

Cs 30 double fit 12.7628
100 12.4040
200 12.3368

Li 190 12.0672

5. Conclusion

A reverse Monte Carlo simulation of the static structure of liquid alkali metals
– lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and caesium (Cs) –
at temperatures close to their melting points and higher temperatures has been
successfully performed using 5000 atoms. The RMC calculations have shown that
there is no significant change in their metallic bonding as temperature increases.
Thus we conclude that the structure of liquid alkali metals is insensitive to the
temperature within the investigated liquid regime.

The mean distance separating the nuclei of any two atoms bonded to each other
was approximately estimated. In general, there is a distortion of the bcc crystal
structure of these metals as temperature increases and their coordination numbers
are high due to the presence of non-covalent bonding between them. It should be
clearly stated here that the RMC method only provides information on the static
structural properties of liquids, but not their dynamic properties thereby having
limited applicability.

Nevertheless, if detailed information is to be obtained, quantitative agreement
with the experimental data is very crucial.
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