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Abstract. We have presented an investigation of the induced focusing in Kerr media of
two laser beams, the pump beam and the probe beam, which could be either Gaussian
or elliptic Gaussian or a combination of the two. We have used variational formalism to
derive relevant beam-width equations. Among several important findings, the finding that
a very week probe beam can be guided and focused when power of both beams are well
below their individual threshold for self-focusing, is a noteworthy one. It has been found
that induced focusing is not possible for laser beams of any wavelength and beam radius.
In case both beams are elliptic Gaussian, we have shown that when power of both beams
is above a certain threshold value then the effective radius of both beams collapses and
collapse distance depends on power. Moreover, it has been found that induced focusing
can be employed to convert a circular Gaussian beam into an elliptic Gaussian beam.
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1. Introduction

Since its first prediction by Chiao et al [1], the self-focusing of laser beams in non-
linear optical media has been a very fascinating research topic [1–11] because of its
technological relevance in optical communication, signal processing and all optical
switching. It was realized that a high-power optical beam can create a waveguide
through a nonlinear medium which can then focus the beam. The balance of self-
diffraction of the beam by self-focusing in such a medium leads to the formation of
self-trapped spatial solitons [9,10]. It has been established that, self-trapping in one
transverse dimension is stable in Kerr law nonlinear media. However, beams which
are self-guided in more than one transverse dimensions are unstable and will either
diffract away or self-focus catastrophically [2–4]. Kelley [8] showed that self-trapped
beams in two transverse dimensions are unstable and could collapse if the intensity
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was above a critical limit. This has been considered as a means of production of
high-strength electric field [2].

The main thrust of the theoretical investigations of self-focusing of laser beams
in nonlinear media has been confined to cylindrical Gaussian beams. In a few re-
cent publications, cylindrical off-axis mode [12], spiral self-trapping [13], elliptical
Gaussian beam [14,15], higher order self-trapped modes [16], self-trapped vector
waves [17] and self-trapping of Bessel beams [18] have been considered. In addi-
tion, self-trapped beams in nonlinear optical fibers with radial dependence of refrac-
tive index profile have also attracted considerable interest [19,20]. Besides these,
Mannassah et al [21] pointed out that, owing to the nonlinearity of the medium, it
is possible to guide a weak probe and significantly alter its spectral intensity distri-
bution in the waveguide created by the intensity profile of another strong beam. In
a Kerr medium, it has been found that the diameter, radius of curvature and the
phase of the probe pulse are functions of the pump pulse characteristics. Moreover,
it has been predicted that a probe pulse that is co-propagating in an enhanced
induced phase modulation nonlinear two-dimensional medium in the presence of a
pump may be transformed into induced superspikes in space and time [22]. There-
fore, it appears that the phenomenon of induced focusing may be very useful in
controlling and manipulating light by light. However, induced focusing of elliptic
Gaussian laser beams has escaped serious attention. Therefore, in this paper, we
investigate induced focusing of two laser beams which could be either Gaussian or
an elliptic Gaussian or a combination of the two.

This paper is arranged as follows: In §2, relevant mathematical model has been
developed. Employing variational formalism, governing equations for the widths of
both the beams have been established. Result and discussions are incorporated in
§3. A brief conclusion is presented in §4.

2. Mathematical model

We consider two co-propagating CW laser beams of nearly equal frequencies ω1 and
ω2 in a Kerr nonlinear medium. These beams are linearly polarized and assumed
to be polarized identically. The propagation equation governing slowly varying
amplitudes A1 and A2 of two laser beams can be written as

−2iδ1
∂A1

∂Z
+ δ2

1

[
∂2A1

∂x2
+

∂2A1

∂y2

]
+ ∆(|A1|2 + 2 |A2|2)A1 = 0, (1)

−2iδ2
∂A2

∂Z
+ δ2

2

[
∂2A2

∂x2
+

∂2A2

∂y2

]
+ ∆(|A2|2 + 2 |A1|2)A2 = 0, (2)

where δj = 1/kj , ∆ = 2n2, kj is the linear propagation constant, n2 is the Kerr
coefficient and j = 1, 2. Equations (1) and (2) have been written ignoring four-wave
mixing process. This is justified since we are considering a medium whose response
is instantaneous. In the absence of four-wave mixing term, there is no exchange
of energy between two laser beams. Hence, energy of the two beams should be
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separately conserved. This can be easily verified by integrating eqs (1) and (2)
separately, which admits the following invariants:

∫∫
|A1|2 dxdy = N1, (3)

and
∫∫

|A2|2 dxdy = N2, (4)

where N1 and N2 are two constants. The above relationships signify that the beam
power or energy flow is separately conserved for both beams.

Equations (1) and (2) are the well-known coupled nonlinear Schrödinger equa-
tions which can be solved analytically. One very important method to solve these
coupled equations is the variational method [23]. This method is based on the trial
functions and Rayleigh Ritz optimization. A detailed justification of this method
has been given by Witham [24] and applied elegantly and extensively by several
authors [25–28] to address different nonlinear optical problems involving nonlinear
Schrödinger equation and its modified form. This formalism rely on the construc-
tion of a field Lagrangian density for the propagating beams with a number of slowly
varying free parameters which may describe the beam amplitude, width and chirp,
and we can increase the number of free parameters for more accurate description
of the physical phenomenon. With the help of the field Lagrangian density and
the prescribed beam profile, we may obtain a set of ordinary differential equations
(ODE) for slowly varying free parameters. This system of coupled ODE’s is in gen-
eral convenient to solve analytically or otherwise numerically. The main advantage
of the variational method is its simplicity and capacity to provide clear qualitative
picture and good quantitative result. This has motivated us to use this method in
the present investigation.

The field Lagrangian density for two propagating beams can be obtained keeping
in mind the requirement that (δL/δA1) = (δL/δA∗1) = (δL/δA2) = (δL/δA∗2) = 0
should reproduce eqs (1) and (2) and their complex conjugate. After identification
of the field Lagrangian, the solution can be obtained from the following variational
problem:

δ

∫∫∫
L dxdy dZ = 0. (5)

Inserting suitable chosen trial functions in the variational principle, we can obtain
a reduced variational problem

δ

∫∫
〈L〉 dZ = 0, (6)

where

〈L〉 =
∫∫

Lc dxdy. (7)

Pramana – J. Phys., Vol. 65, No. 3, September 2005 427



Manoj Mishra and Swapan Konar

Lc denotes the result of inserting the chosen trial functions into the Lagrangian
L. The Euler–Lagrange equations corresponding to eq. (6) yield the desired set of
coupled ordinary differential equations mentioned earlier.

The appropriate field Lagrangian density L is given by

L = iδ1

(
A∗1

∂A1

∂Z
−A1

∂A∗1
∂Z

)
+ iδ2

(
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)

+δ2
1
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∣∣∣∣
2

+
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∂y
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2
)

+ δ2
2

(∣∣∣∣
∂A2

∂x

∣∣∣∣
2

+
∣∣∣∣
∂A2

∂y

∣∣∣∣
2
)

−∆
2

(|A1|4 + |A2|4)− 2∆ |A1|2 |A2|2 , (8)

where the asterisk denotes complex conjugate. We take the following trial functions.

A1(x, y, z) = θ1(z) exp
[
− x2

2a2
1r

2
1

− y2

2b2
1r

2
1

]

× exp
[
i
(
α1(z)x2 + β1(z)y2 + Φ1(z)

)]
, (9)

A2(x, y, z) = θ2(z) exp
[
− x2

2a2
2r

2
2

− y2

2b2
2r

2
2

]

× exp[i(α2(z)x2 + β2(z)y2 + Φ2(z))], (10)

where θj , rjaj , rjbj , rjαj and rjβj are respectively real amplitude, pulse width in
x direction, pulse width in y direction, radius of curvature in x and y directions,
rj is the constant for respective beams and Φj is the longitudinal phase. Values of
these quantities at z = 0 can be written respectively as θj(0), aj(0), bj(0), αj(0),
βj(0) and Φj(0). For convenience we have assumed a1(0)b1(0) = a2(0)b2(0) = 1,
which is no restriction. Clearly for circular Gaussian beams a1(0) = b1(0) = 1 and
a2(0) = b2(0) = 1. The reduced Lagrangian turns out to be

〈L〉 =
∫ ∞

−∞
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2
1

)
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(
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2
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+
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1
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2

+ 4a2
2α

2
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)
+

(
1
b2
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−π
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(
a1b1θ

4
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2
1θ

2
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(a2
1 + a2

2)1/2(b2
1 + b2

2)1/2
. (11)

At this stage it is possible to derive variational equations with respect to Φj , θj , aj ,
bj , αj and βj . These equations after some rearrangement can be written as follows:
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πr2
1a1b1θ

2
1 = N1 (12)

πr2
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2
2 = N2 (13)
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da2
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1
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where ξ = k1z, M1 = k4
1r

4
1, M2 = k4

2r
4
2, X1 = a1

[
1 +

(
r2
r1

a2
a1

)2
]1/2

, Y1 =

b1

[
1 +

(
r2
r1

b2
b1

)2
]1/2

, p1 is the power of the first beam normalized with the thresh-

old power for self-focusing if the beam is circular Gaussian (a1(0) = b1(0) = 1) with
radius r1, p2 is the power of the second beam normalized with the threshold power
of self-focusing if the beam is circular Gaussian (a2(0) = b2(0) = 1) with radius r2

and λ1 and λ2 are respectively wavelengths of the first and second beam. Equations
(18)–(21) can now be solved and analyzed to investigate induced self-focusing and
the conversion process.

3. Result and discussion

Induced focusing, when both beams are circular Gaussian: First we consider the
case of focusing when both beams are circular Gaussian. Threshold power of two
beams at which both beams remain self-trapped can be written respectively as

p1th =
[
1− 8(λ2/λ1)2

[1 + (r2/r1)2]

]/ [
1− 64(r2/r1)4

[1 + (r2/r1)2]

]
(22)
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Figure 1. Allowed values of wavelength and beam radius for which induced
focusing is possible. Induced focusing is possible in shaded region and impos-
sible in unshaded region. r = (r2/r1)

2 and λ = (λ2/λ1)
2.

and

p2th = 1− 8p1th(λ1/λ2)2(r2/r1)4

[1 + (r2/r1)2]2
. (23)

An important issue is whether a much stronger beam called the pump beam, can
induce a weak beam to focus. If this is possible, then we would be able to design a
pump probe experiment in which an intense pump beam can induce a weak probe
beam to focus due to cross-phase modulation when they co-propagate simultane-
ously in a self-focusing medium. In order to examine the above aspect, we note
that p1th and p2th are less than 1 for both beams to be self-trapped, which is less
than the threshold required (i.e. p1 = 1 and p2 = 1) for individual beams to be
self-trapped. As an example, take the special case λ1 = λ2 and r1 = r2, which cor-
responds to two co-propagating laser beams of equal frequencies and beam-widths.
We find p1th = p2th = 1/3, which is just 33% of the threshold required for a single
beam self-trapping. Thus, in general when both beams are present, they can be
self-trapped with much less power in comparison to individual beam self-trapping.
This seems to be an interesting finding. Another very important issue is to exam-
ine whether cross-phase modulation automatically leads to the induced focusing at
any wavelength and any beam radius. We have identified a region of wavelength
and beam radius where induced focusing is possible. This has been depicted in
figure 1 in which it has been shown that induced focusing is possible in the shaded
region. Therefore, it is clear that induced focusing is not possible with two laser
beams of any wavelength and beam-width. This is another important finding of
the present investigation. Both beams collapse when p1 and p2 are greater than
the corresponding self-focusing threshold. In figure 2, we have displayed induced
collapse of two circular Gaussian laser beams of different wavelength. It is obvious
that collapse length decreases with the decrease in wavelength. The behavior of
induced collapse at different beam-width ratio is depicted in figure 3. It is obvious
that one of the beams starts oscillating as the beam-width ratio increases before it
finally collapses.
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Figure 2. Induced collapse of two circular Gaussian laser beams at differ-
ent wavelengths. (r2/r1) = 1, p1 = 6.7, p2 = 1.5. (a) λ2/λ1 = 1, (b)
λ2/λ1 =

√
10, (c) λ2/λ1 = 10.

Induced focusing when both beams are elliptical: In general, it is not possible to
solve eqs (18)–(21) analytically. However, solution can be obtained for a special
case of λ1 = λ2, r1 = r2 and both beams are of equal power. For such a special
case, eqs (18)–(21) reduce to

M
d2a1

dξ2
=

1
a3
1

− p

a2
1b1

− 8pa1

X3Y
, (24)

M
d2b1

dξ2
=

1
b3
1

− p

a1b2
1

− 8pb1

XY 3
, (25)

M
d2a2

dξ2
=

1
a3
2

− p

a2
2b2

− 8pa2

X3Y
, (26)

M
d2b2

dξ2
=

1
b3
2

− p

a2b2
2

− 8pb2

XY 3
, (27)

where M = k4r4, p = p1 = p2 is the power of each beam, X = a1[1 + (a2/a1)2]1/2

and Y = b1[1 + (b2/b1)2]1/2. Required condition for equilibrium is a1(0) = b1(0),
and a2(0) = b2(0), i.e., both beams are circular Gaussian. Therefore, stationary
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Figure 3. Induced collapse of two circular Gaussian laser beams at different
beam radii. (λ2/λ1) = 1, p1 = 1.2, p2 = 0.2. (a) r2/r1 = 1, (b) r2/r1 = 2,
(c) r2/r1 = 4.

propagation in which transverse width a1, b1, a2 and b2 of both beams remain con-
stant is not possible with elliptical Gaussian beams. We can easily show that the
total energy of the system is conserved and the above set of equations can be derived
from a potential

V (a1, b1, a2, b2) =
1

2a2
1

+
1

2b2
1

+
1

2a2
2

+
1

2b2
2

− p

a1b1
− p

a2b2
− 8p

XY
. (28)

The total energy of the system, which is conserved, can be written as

H =
M

2
(ȧ2

1 + ȧ2
2 + ḃ2

1 + ḃ2
2) + V (a1, b1, a2, b2), (29)

where the quantity with dot signifies derivative with respect to ξ. Equations (24)–
(27) can be recasted in the following form:

M
d2ρ2

dξ2
=

4H

M
, (30)

where ρ2 = ρ2
1 + ρ2

2 is the effective radius of the beam ρ2
1 = a2

1 + b2
1, ρ

2
2 = a2

2 + b2
2.

The above equation can be solved to yield
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Figure 4. Stationary propagation of two elliptical Gaussian laser beams in
which effective radius remains constant. a1(0) = 3.0, b1(0) = 0.33, a2(0) = 2.0
and b2(0) = 0.5. pth = 1.1736.

ρ2 =
2H

M
ξ2 + 2(ρ1(0)ρ̇1(0) + ρ2(0)ρ̇2(0))ξ + ρ2(0). (31)

For the initial parallel beams ρ̇1(0) = ρ̇2(0) = 0, and therefore ρ2 = (2H/M)ξ2 +
ρ2(0). The condition for stationary effective radius is H = 0. For H < 0, the
effective radius decreases and finally collapse will take place at a distance ξc =
[−(ρ2(0)M/2H)]1/2. For H > 0, the effective radius increases quadrically with ξ.
The threshold power required for stationary effective radius can be evaluated as

pth =
[(

e1 +
1
e1

)
+

(
e2 +

1
e2

)]/ [
4 +

16√
(1 + a2

21)(1 + b2
21)

]
, (32)

where e1 and e2 are respectively the ellipticity of the first and second beams, i.e.
e1 = a1(0)/b1(0), e2 = a2(0)/b2(0), a21 = a2(0)/a1(0) and b21 = b2(0)/b1(0). Note
that for H = 0, though ρ2 remains stationary, all other beam-width parameters
such as a1, a2, b1 and b2 oscillate as the beam propagates. In figure 4 we have
depicted this behavior. For the general case where two laser beams are of different
wavelengths, beam-widths and power, the phenomenon of induced focusing can be
investigated only by numerically solving eqs (18)–(21).

Conversion process: We have earlier shown that the condition for equilibrium is
a1(0) = b1(0) and a2(0) = b2(0). Therefore, an elliptic Gaussian beam cannot
propagate without oscillation of its two widths. This property can be used to
convert a circular Gaussian beam into elliptic Gaussian beam with the help of
another elliptic Gaussian beam. At equilibrium, second derivative of the beam-
widths of each beam should be zero. Therefore, from eqs (18) and (19) we get

a2(0)
a1(0)

=
b2(0)
b1(0)

. (33)

From the above relationship, we can conclude that in case the first beam is circular
Gaussian, i.e. a1(0) = b1(0) = 1, then the equilibrium can be obtained only if the
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Figure 5. Conversion of a circular Gaussian beam into an elliptic Gaussian
beam. Initially the first laser beam is circular Gaussian (a1(0) = b1(0) = 1)
and the second laser beam is elliptical Gaussian (a2(0) = 2.0, b2(0) = 0.5).
(a) p1 = 0.5, p2 = 0.05, (b) p1 = 0.5, p2 = 0.10, (c) p1 = 0.5, p2 = 0.8.

second beam is also circular Gaussian, i.e. a2(0) = b2(0). Therefore, using an ellip-
tic Gaussian beam we can convert a circular Gaussian beam into an elliptical beam.
Such conversion may be useful in sensor design and signal processing. In figure 5
we have displayed this conversion process, in which we have assumed initially the
first beam to be circular Gaussian and the second beam to be elliptic Gaussian.
From the figure it is obvious that the first beam has been converted into elliptic
Gaussian beam as it propagates in the nonlinear medium. One interesting point is
that such conversion is possible even if the power of the converting beam is very
small in comparison to individual beam self-focusing threshold.

4. Conclusion

We have presented an investigation of the induced focusing in Kerr media of two
laser beams, the pump beam and the probe beam, which could be either Gaussian
or elliptic Gaussian or a combination of the two. We have used variational for-
malism to derive relevant beam-width equations. Extensive numerical simulation
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has been performed to investigate the influence of the pump beam on the probe
beam. Among several important findings, a noteworthy one is that, a very week
probe beam can be guided and focused when power of both beams are well below
their individual threshold for self-focusing. It has been found that induced focusing
is not possible for laser beams of any wavelength and beam radius. In case both
beams are elliptic Gaussian, it has been found that when power of both beams
are above a certain threshold value then the effective radius of both beams col-
lapses and collapse distance depends on power. Moreover, it has been found that
induced focusing can be employed to convert a circular Gaussian beam into elliptic
Gaussian beam. Such conversion is possible with a converting beam of very small
power.
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