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Abstract. We present the results of extensive numerical studies on stochastic resonance
and its characteristic features in three model systems, namely, a model for Josephson
tunnel junctions, the bistable cubic map and a coupled map lattice formed by coupling
the cubic maps. Some interesting features regarding the mechanism including multisignal
amplification and spatial stochastic resonance are shown.
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1. Introduction

The phenomenon of stochastic resonance (SR) is the noise-induced detection of sub-
threshold signals or noise-induced transmission of information using the dynamics
of nonlinear bistable system or threshold system as the supportive set-up. Since its
discovery in 1981 [1], it has been detected and analysed in a variety of systems such
as electronic circuits, ring laser, electron paramagnetic resonance system, actual
nerve cells and neural networks [2–10]. Recently this phenomenon has been studied
in chaotic systems, coupled systems and spatially extended systems [11–15]. The
mechanism of SR in a bistable system is explained using the mechanical model
with double well potential and is characterised by the signal-to-noise ratio (SNR)
computed from the power spectrum of the output. Its bell-shaped variation with
the noise amplitude helps to define maximum SNR or peak SNR for an optimum
amplitude of input noise. Although SR is most often realised by tuning the input
noise amplitude for a given subthreshold signal, environmental noise itself is utilised
in real systems or biological systems. Then adapting and designing the system also
has a role to play in improving SR in such cases. For threshold-based systems, hav-
ing one or two stable states, SR depends on the escape mechanism followed by an
external reset procedure. Here the difference between the successive escape times
gives the inter spike interval (ISI) whose probability shows peaks synchronised with
the period of the signal at an optimum noise amplitude.
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Here, we analyse the onset and characterisation of SR in three different model
systems, namely, a model for Josephson junction (JJ), the bistable cubic map and
a coupled map lattice (CML) with the cubic map as the on-site dynamics. We show
that JJ combines the features of both bistable and threshold systems and the two
mechanisms of SR can be distinguished by using multisignal inputs. It should be
mentioned that SR in JJ has been studied in various contexts, such as, in the over-
damped limit with multiplicative noise [16] and in a superconducting loop with JJ
[17]. But here we consider JJ as a dynamical system with a small damping and
in this limit it is almost similar to a pendulum system, having the oscillating and
rotatory modes.
The paper is organised as follows: In §2, we present the phenomenon of SR in

JJ using a model system. Section 3 includes SR studies on bimodal cubic map and
CML. Conclusions are given in §4.

2. Stochastic resonance in a model for Josephson junction

The model system representing the dynamics of a JJ can be written as [16]

Ẋ = Y,

Ẏ = −k|Y |Y − sinX +A sinZ,

Ż = ω1, (1)

where X is the difference in phase between the electron pair wave functions on both
sides of the junction and (k,A,w1) form the control parameter space with damping
k, amplitude of driving A and frequency of driving w1. The quadratic nature of the
damping arises from the inverse dependence of the junction resistance on voltage.
One of us (GA) has done extensive numerical analysis of this system [18], wherein
regions of bistability in two different oscillating states S1 and S2 are isolated. These
are chosen as the required system parameters for SR studies. Thus, for k = 0.1,
with 0.2 < A < 0.4 and 0.5 < w1 < 0.8, S1 and S2 have two well-separated basins
of attraction which can be identified by defining a proper distance function D from
the origin for S1 and S2. This helps to detect the shuttling from S1 to S2 during
SR. The time series of D is subjected to spectral analysis after a two-level filtering
to calculate the SNR as 10 log(S/N) where S is the power of the signal peak and
N the average noise level around the peak.
When Gaussian white noise of variance σ = 0.2 is added and amplitude E

tuned properly, the typical variation of SNR is observed at the driving frequency
f1 = ω1

/

2π, confirming the occurrence of SR in the system (figure 1). When an
additional signal of frequency f2 is added, SR can be observed for both f1 and f2

[19]. The calculations are repeated for a range of values f2 and it is found that for
all combinations of (f1, f2), only the basic frequencies are amplified and none of
the mixed modes are present in the output.
Next, the same system is analysed taking the region of the parameter space where

its dynamics resembles a threshold system, i.e., the basin of S2 has a large range of
initial conditions with escape scenario. The system is reinjected back to its basin
by resetting immediately after each escape. This is repeated for a large number
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Figure 1. Variation of SNR (in dB) with noise for the system (1) in a bistable
set-up with frequency, f1 = 0.095. Here K = 0.1, A = 0.3.
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Figure 2. The probability of escape synchronised with the signal for the
system (1) in threshold set-up with frequency f1 = 0.095 as a function of
noise amplitude.

of escapes and the probability of the ISI, synchronised with the driving signal is
calculated. It is found that this probability is maximum at an optimum noise
amplitude (figure 2). When this is repeated with the addition of a subthreshold
signal of frequency f2 in the range 0.05 to 0.3, it is found that apart from the two
basic frequencies f1 and f2, the difference frequency (f1 − f2)/2 also has a peak,
which is in contrast with the bistable mechanism (figure 3). It shows that the two
mechanisms of SR are different at least with respect to multisignal inputs. More
details regarding SR in the system can be found elsewhere [19].

3. Stochastic resonance in bimodal cubic map and coupled map lattice

Here we consider a typical 2-parameter bimodal cubic map defined by

Xn+1 = b+ aXn −X3
n
. (2)
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f3 =.035
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Figure 3. Same as figure 2 when a second frequency f2 = 0.165 is added.
Note that apart from f1 (lowest profile) and f2, a third frequency (f1 − f2)/2
is also enhanced.

It has been shown to exhibit a rich variety of dynamical behaviour [20], in particular,
a bistable window for b for chosen values of a. When a = 1.4, the bistability is
in the period-1 state and by varying a, it can be shifted to higher period doubled
states and finally to chaotic states for a = 2.4. Studies related to SR and resonance
due to shuttling with chaotic input of a logistic map (called chaotic resonance)
have been reported earlier by the same authors [21]. When two such maps are
coupled with linear differential coupling in both ways, the performance of SR is
found to improve due to the cooperative behaviour between individual systems.
Here, there is an additional design parameter, viz., the coupling strength ε, at an
optimum value of which the SNR becomes maximum. Similar results are observed
with chaotic input from the logistic map instead of noise [21]. But it is found
that Gaussian random noise is more effective in amplifying the signal compared to
chaos. This may be because, a chaotic time series is characterised by a power-law
behaviour with the power varying on 1/fα. On the other hand, the Gaussian white
noise has a flat power spectrum (α = 0) so that power remains constant on all
time-scales. The effectiveness of coloured noise in amplifying the signal is currently
under study and will be presented elsewhere. When multisignal inputs are used,
only the individual frequencies are amplified and none of the mixed modes are found
in the output. A typical power spectrum with three input frequencies is shown in
figure 4. More details can be found in [22].
We now construct a CML with the bimodal cubic map as the on-site dynamics

f(xi):

Xi

t+1 = (1− ε)f(xi
t
) +

ε

2

[

f(xi−1
t

) + f(xi+1
t

)
]

, (3)

where i denotes the spatial index, t denotes the temporal index and ε the coupling
strength. With open boundary conditions xt(0) = xt(n + 1) = 0, with n as the
lattice size, we analyse the temporal iterates of the central site with ε = 0.01 and
random initial conditions in the range [−1, 1] for all sites. It is found that the
iterates remain confined to one of the basins depending on the initial conditions.
Next the system is driven independently by a small periodic signal Z sin(2πpt) and
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Figure 4. The power spectrum for the composite signal with three basic
frequencies, f1 = 0.125, f2 = 0.05 and f3 = 0.2 for two coupled maps using
(2). The three peaks due to SR at these three frequencies can be clearly seen.
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Figure 5. For the CML (3) with n = 15 and ε = 0.01, the temporal behaviour
of the middle site (i = 8) are shown under four different situations. With no
signal and noise (top left), with signal alone (top right), with noise alone
(bottom left) and with noise and signal together (bottom right).

a Gaussian random noise Eη(t) and also by a combination of both. Here Z and E
represent the amplitude of the signal and noise respectively. The results are shown
in figure 5 for a lattice of size n = 15. it is clear that there is a systematic shuttling
between the basins only when both the signal and noise are present. Similar results
are obtained for other n values also.
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Figure 6. Variation of SNR with noise amplitude for the CML in (3) with
ε = 0.01.
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Figure 7. Variation of optimum noise amplitude giving best SNR with the
coupling constant ε for the CML.

To pursue SR in the system further, the amplitude and frequency of the signal
are fixed at Z = 0.2 and p = 1/8. With n = 15 and ε = 0.01, 512 iterates after
a few thousand iterations are chosen to compute the power spectrum with a two-
level filtering. The SNR curve shown in figure 6 is then plotted by varying the noise
amplitude.
Next, ε is varied from 0.01 to 0.05 and the variation of peak SNR with ε is

studied. The variation is not as pronounced as in the case of the linearly coupled
cubic maps, the reason being the difference in the nature of coupling. The noise
amplitude for maximum SNR is found to vary linearly with ε (figure 7), for the
parameter values chosen here.
Another interesting result is the spatial SR shown by the system. To study this,

a frozen pattern after a few thousand iterations is used with a lattice size of 512.
Now, the signal is static in time and varies along the lattice as Z sin(2πpi) with
Z = 0.05 and p = 1/8. A two-state filtering is done for the output and periodic
boundary conditions are used. The behaviour of the lattice for the spatial signal
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Figure 8. Variation of SNR with noise amplitude for a frozen pattern of the
lattice with n = 512 with a spatial signal. The average behaviour of a number
of frozen patterns after a sufficiently large number of iterations is considered
for the calculation. The dots represent numerical data and the continuous line
is the best fit.
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Figure 9. Variation of SNR with noise amplitude for a fixed value of
ε = 0.001 but two different values of lattice size.

is similar to the behaviour with temporal signal. The only difference is that, when
noise and signal are added, there is a spatial shuttling along the lattice.
The SNR is now calculated taking the spatial series for different values of the

noise amplitudes, and is shown in figure 8. It is evident that the lattice points are
synchronised with the spatial signal for an optimum noise amplitude, indicating a
spatial SR. It should be noted that the idea of a spatial SR has been introduced
earlier in a different context in connection with one-dimensional Ising model [23].
Two important parameters of a CML are the lattice size n and the coupling

strength ε. In the case of temporal SR, it is found that there is a marked improve-
ment in the SNR values with the increase in n [15]. A similar result is obtained
for spatial SR is shown in figure 9, where SNR values are plotted for two different
values of n, 256 and 512. But it is found that for a given lattice size, there is no
significant change in SNR for the range of ε values considered here.
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4. Conclusions

In this paper, three different types of systems are numerically analysed from the
viewpoint of SR. Apart from the conventional SR, we study the response of the
systems using multisignal inputs also. This enables us to reveal some fundamental
difference between the bistable and threshold mechanisms of SR. Another interest-
ing result is that the SR of a signal extended spatially along the lattice. Our results
imply that such a signal can be enhanced using an optimum background noise level,
which may have potential practical applications.
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