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Incompressible turbulence as non-local field theory
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Abstract. It is well-known that incompressible turbulence is non-local in real space
because sound speed is infinite in incompressible fluids. The equation in Fourier space
indicates that it is non-local in Fourier space as well. However, the shell-to-shell energy
transfer is local. Contrast this with Burgers equation which is local in real space. Note
that the sound speed in Burgers equation is zero. In our presentation we will contrast these
two equations using non-local field theory. Energy spectrum and renormalized parameters
will be discussed.
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1. Introduction

Generic equations in physics, like diffusion equation, Schrödinger equation are local
in real space. Take Schrödinger’s equation for example:

−i~∂ψ
∂t

= − ~2

2m
∇ψ + V (x)ψ,

where V (x) is the potential and ψ(x, t) is the wave function. Clearly, to compute
ψ(x, t + dt) given ψ(x, t), we need the local function, and finite number of its
derivatives. In this talk we investigate whether the equations for fluid flows is local
or not.

Fluid flows are described by Navier–Stokes (NS) equation, continuity equation,
and the equation of state given below:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u, (1)

∂ρ

∂t
+∇ · (ρu) = 0, (2)

p = p(ρ), (3)

where u, p, ρ are the velocity, pressure, and density field respectively and ν is the
kinematic viscosity of the fluid. We non-dimensionalize the above equations by
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scaling the quantities appropriately, e.g., divide u by velocity scale U . Navier–
Stokes equation gets modified to

∂u

∂t
+ (u · ∇)u = −C

2
s

U2
∇ρ+ ν

UL
∇2u, (4)

where L is the length scale and Cs =
√

dp0/dρ0 is the sound speed. If the sound
speed Cs and ν/UL are finite, then we can find u(x, t+dt) and ρ(x, t+dt) given u(x)
and ρ(x, t) (assuming that u(x, t), ρ(x, t), and their first and second derivatives are
finite). For typical flows ν/UL is finite, and so for finite Cs, Navier–Stokes equation
is local in real space.

Note that the disturbances propagate with the sound speed. The larger the sound
speed, larger the range of influence per unit time. Still the influence moves locally as
long as the sound speed is finite. When the sound speed is infinite, then disturbances
can propagate instantaneously, and all parts of the system start interacting; hence
the system becomes non-local. Hence, the equations for fluid flows become non-
local when the sound speed is infinite, which is the case for incompressible fluids
(δρ = 0). The speed of propagation is infinite in Newton’s law of gravitation as
well as in Coulomb’s interactions between the charged particles. These are some
other examples of non-local interactions in physics.

We can abstract the above physics using a 2D mesh of spring-mass system. For
finite spring constant, the disturbance propagates with a finite speed, and the
physics is local. When the spring constant is very large, the physics is still local, but
the range of propagation per unit time becomes quite large. Here mass is pulled-
pushed by local spring only (four of them). When the spring constant become
infinite, then the whole system behaves like a solid and the speed of propagation
becomes infinite. This system has non-local interactions; the movement of the
mass at a point is affected by masses and springs at large distances. In fact, in
this non-local system, we can think of a mass connected to all other masses, like in
Coulomb’s interactions or in Calegaro–Sutherland model.

Any real fluid has finite sound speed however large it may be. In practice, the fluid
is considered incompressible if Cs/U À 1. The properties of this fluid is expected to
match with the ideal incompressible fluid. This is based on an assumption that the
properties of fluid with Cs →∞ matches with Cs =∞, or (Cs →∞) = (Cs =∞).
This assumption seems reasonable, but we are not aware of any strict mathematical
result showing this. Note that (ν → 0) 6= (ν = 0).

In the next section we discuss incompressible Navier–Stokes equation.

2. Incompressible Navier–Stokes equation

Before we proceed further, we remark that for incompressible fluids the normal-
ized −∇p = −(C2

s /U
2)∇ρ is finite even though Cs is infinite. Also note that the

normalized term (ν/UL)∇2u is finite.
The continuity equation yields a constraint equation

∇ · u = 0,

the substitution of which in NS equation gives Poisson’s equation for p,

334 Pramana – J. Phys., Vol. 64, No. 3, March 2005



Incompressible turbulence as non-local field theory

∇2p = −∇ · {u · ∇u} .
Therefore,

p(x, t) =

∫ −∇ · {u · ∇u}
|x− x′| ,

which is the Coulomb’s operator (non-local). Clearly the computation of p(x, t) and
consequently that of u(x, t+ dt) requires knowledge of u(x′) at all positions. This
is another way to infer that incompressible NS is non-local in real space. Landau
and Lifsitz [1], Frisch [2], and others reached the above conclusion.

It is customary to study NS in Fourier space. Let us investigate whether NS is
local or non-local in Fourier space. NS equation in Fourier space is

∂ui(k, t)

∂t
= −ikj

∫

uj(q)ui(p) + iki
kjkm

k2

∫

uj(q)um(p)

with k = p + q. Note that the second term arises due to pressure.
Since ui(k, t) requires knowledge of uj(q)ui(p) where p and q could be very

different from k, hence NS is non-local interactions in Fourier space. If we interpret
NS in terms of energy transfer, we find that the energy is exchanged between all
the three modes of the triad. Kraichnan [3] and Dar et al [4] devised formulas
to measure the strength of interactions in fluid turbulence. In this paper we will
use Dar et al’s mode-to-mode formalism [4] in which the energy transfer rate from
Fourier mode p to Fourier mode k with Fourier mode q acting as a mediator is
given by

S(k|p|q) = Im [k · u(q)u(p) · u(k)]. (5)

The above quantity can be computed using either numerical simulation or analytic
tools. Earlier, Domaradzki and Rogallo [5] and Waleffe [6] calculated the above
using EDQNM approximation. Recently, Verma et al [7] calculated the above using
field-theoretic technique. In this paper we will report analytical result obtained
using first-order field-theoretic calculation. In this scheme, under the assumption
of homogeneity and isotropy we obtain

〈S(k′|p|q))〉 =

[T1(k, p, q)C(p)C(q) + T2(k, p, q)C(k)C(q)
+T3(k, p, q)C(k)C(p)]

ν(k)k2 + ν(p)p2 + ν(q)q2
, (6)

where Ti’s are functions of k, p and q. To save space, we have skipped all the details
for which the reader is referred to Verma et al [7].

We focus our attention on the inertial range where the interactions are self-
similar. Therefore, it is sufficient to analyse S(k′|p|q) for triangles (1, p/k, q/k) =
(1, v, w). Since, |k − p| ≤ q ≤ k + p, |1 − v| ≤ w ≤ 1 + v, any interacting triad
(1, v, w) is represented by a point (v, w) in the hatched region of figure 1 [8].

For convenience, 〈S(v′, w′)〉 are represented in terms of new variables (v′, w′)
measured from the rotated axis shown in figure 1. It is easy to show that v =
1 + (v′ − w′)/

√
2, w = (v′ + w′)/

√
2.

The local wave numbers are v ≈ 1, w ≈ 1, while the rest are called non-local wave
numbers. We substitute C(k) and ν(k) in eq. (6) and rewrite S(k|p|q) in terms of
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Figure 1. The interacting triad (k,p,q)/k = (1, v, w) under the condition
k = p+ q is represented by a point (v, w) in the hatched region. The axis
(v′, w′) are inclined to axis (v, w) by 45◦. Note that the local wave numbers
are v ≈ 1, w ≈ 1 or v′ ≈ w′ ≈ 1/

√
2.

v′, w′. For details refer to Verma et al [7]. Figure 2 illustrates the density plots of
〈S(v′, w′)〉. Figure 2a shows the plot for 3D, while figure 2b shows the one for 2D.
We can draw the following conclusions from the plots.

1. When v′ → 1 or v → 0, we find that S(k|p|q) is large positive for 3D and
large negative for 3D. This shows that the non-local interactions are strong.

2. The value of S at (v, w) = (1, 1), or (v′, w′) = (1/
√
2, 1/
√
2) is zero in both

2D and 3D. When v ≈ w ≈ 1, S is small indicating that local interactions are
small.

3. When v → 0, S > 0 for 3D and S < 0 for 2D. This is reminiscent of forward
cascade in 3D, and backward cascade in 2D.

Hence, we find that the interactions in the incompressible fluid turbulence is non-
local. This result appears to contradict Kolmogorov’s phenomenology which pre-
dicts local energy transfer in Fourier space. We will show below that the shell-to-
shell energy transfer rates are local even though the interactions are non-local.

3. Shell-to-shell energy transfers in turbulence

The wave number space is divided into shells (k0s
n, k0s

n+1), where s > 1, and n
can take both positive and negative values. The energy transfer rate from mth shell
(k0s

m, k0s
m+1) to nth shell (k0s

n, k0s
n+1) is given by [4]

Tnm =
∑

k0sn≤k≤k0sn+1

∑

k0sm≤p≤k0sm+1

〈S(k|p|q)〉 . (7)
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(a) (b)

Figure 2. Density plot of 〈S(v′, w′)〉 of eq. (6) without the bracketed factor
for (a) 3D, (b) 2D.

Figure 3. Plots of normalized shell-to-shell energy transfer Tnm/Π vs. n−m
for m = 4.9. The plots collapse on each other indicating self-similarity.

If the shell-to-shell energy transfer rate is maximum for the nearest neighbours, and
decreases monotonically with the increase of |n−m|, then the shell-to-shell energy
transfer is said to be local.
Tnm can be computed using either numerical simulations or analytical tools.

Zhou [9] calculated similar quantity. In figure 3 we plot Tnm obtained using nu-
merical simulation [7]. Clearly shell-to-shell energy transfer is local as envisaged by
Kolmogorov.

We [7] have also computed the shell-to-shell energy transfer rates using field-
theoretic method. The reader is referred to the original paper for the details. The
plots of Tnm for both 3D and 2D fluid turbulence are shown in figures 4 and 5
respectively.

From the above plot we can clearly deduce that energy transfer in 3D fluid
turbulence is local. In fact, the values obtained from analytical calculations match
very well with the numerical values shown in figure 3.
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Figure 4. Plot of normalized shell-to-shell energy transfer Tnm/Π vs. n−m
for d = 3. The nth shell is (k0s

n, k0s
n+1) with s = 21/4. The energy transfer

is maximum for n = m ± 1, hence the energy transfer is local. The energy
transfer is also forward.
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Figure 5. Plot of normalized shell-to-shell energy transfer Tnm/ |Π| vs. n−m
for d = 2 in the inertial range. The energy transfer rate from the shell m to
the shells m + 1, m + 2, m + 3 is forward, but m + 4 onward it is negative.
The net effect of all these transfer is the inverse energy flux Π.

We have done similar analysis for 2D fluid turbulence. The shell-to-shell energy
transfer rates to the nearby shells are forward, whereas the transfer rates to the
far-off shells are backward. The net effect is a negative energy flux. This theoretical
result is consistent with Dar et al’s numerical finding [4]. The inverse cascade of
energy is consistent with the backward non-local energy transfer in mode-to-mode
picture [S(k|p|q)] (see figure 2). Verma et al [7] have shown that the transition from
backward energy transfer to forward transfer takes place at dc ≈ 2.25.
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To summarize, the triad interactions in incompressible fluids is non-local both in
real and Fourier space. However, the shell-to-shell energy transfer is local in Fourier
space. Verma et al [7] attribute this behaviour to the fact that the non-local triads
occupy much less Fourier space volume than the local ones.

4. Fully compressible limit: Burgers equation

Let us go back to eq. (4) and take the limit Cs = 0. This is the fully compressible
limit, and the resulting equation was first studied by Burgers. This equation, given
below, is known as Burgers equation (strictly speaking in 1D).

∂u

∂t
+ (u · ∇)u = ν∇2u.

Clearly this equation is local in real space. What about in Fourier space?
In Fourier space, the above equation is given by

∂ui(k, t)

∂t
= −i

∫

uj(q)pjui(k− q)− νk2ui(k),

which implies that the interactions are non-local in Fourier space. Note that the
pressure term is absent in the above equation.

The field-theoretic treatment of the above equation is rather complex for arbitrary
dimension. Here we attempt the self-consistent field-theoretic treatment of one-
dimensional Burgers equation for 1D Burgers equation. In 1D, the energy spectrum
of Burgers equation is given by

C(k) = A
µ2

L
k−2, (8)

where L is the length of the system, µ is the shock strength, and A is a constant.
Using dimensional arguments, we write the renormalized viscosity of the following
form [10,11]:

ν(knk
′) = ν∗(k

′)µ

√

A

L
k−3/2

n . (9)

Unfortunately straightforward application of self-consistent renormalization group
(RG) procedure of McComb and Verma [10,11] does not work. The contributions
of 〈u>(p)u>(q)〉 is negligible; one needs to come up with a cleverer renormalization
scheme to obtain the renormalized viscosity.

To make a connection with Kolmogorov’s theory of fluid turbulence, we rewrite
eq. (8) as

C(k) = A[Π(k)]2/3k−5/3

with the flux function Π(k) as

Π(k) =
µ3

L3/2
k−1/2. (10)
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Note that the flux Π has become k-dependent. Verma [12] and Frisch [2] have
shown that the flux function follows a multifractal distribution.

The question is whether we can compute the flux using field-theoretic method.
Since Burgers equation is compressible, the formula S(K|p|q) is not applicable [13].
However, we can still write the flux using Kraichnan’s combined energy transfer
formula [3]. The energy flux crossing a wave number k0 is given by

Π(k0) =

∫

k>k0

dk

∫

p<k0

1

2
= [−ku(p)u(q)u(k)] ,

with k+ p+ q = 0. We apply first-order perturbative method assuming u(k) to be
quasi-normal as in fluid turbulence. We also make a change of variable to

k =
k0

u
; p =

k0v

u
; q =

k0w

u
.

To first order,

Π(k0) =
k2
0

2

∫ 1

−1

du

∫ u

−u

(k)
kC(p)C(q) + pC(k)C(q) + qC(k)C(p)

ν(p)p2 + ν(q)q2 + ν(k)k2

=
A3/2

ν∗
Π(k0)

∫ 1

−1

dv 2(1− v1/2)
w−2 + v−2 − (vw)−2

1 + v1/2 + w1/2
,

with w = 1 − v. We find that the above integral converges and is equal to 2.45.
Hence,

1 =
A3/2

ν∗
2.45.

Thus we show that C(k), ν(k),Π(k) given by eqs (8)–(10) are consistent solutions
of 1D Burgers equation. Note however that the renormalization group analysis of
Burgers equation is somewhat uncertain.

The spectral index of Burgers equation (−2) is very different from the the spectral
index of incompressible fluid turbulence (−5/3). The difference arises due to the
neglect of −∇p term in Burgers equation. The compressible effects are different in
these two equations. Burgers equation is local in real space, while incompressible
NS is non-local in real space.

It is interesting to compare the above results with non-commutative field theory,
where the non-local interactions are included using parameter θ. Burgers equation
is local, while incompressible NS is non-local due to −∇p term. Note that the
∇p term is non-local in Coulomb’s operator sense (V ∼ 1/r). We are not aware
of field-theoretic ideas applied to Couloumb’s operator, which is one of the most
important operator in physics. We hope this investigation and its relation with
fluid turbulence will be carried out in future.

Acknowledgements

The above work is a result of collaborative work and discussions with Arvind Ayyer,
Shishir Kumar, Amar V Chandra, V Eswaran and G Dar.

340 Pramana – J. Phys., Vol. 64, No. 3, March 2005



Incompressible turbulence as non-local field theory

References

[1] L D Landau and E M Lifsitz, Fluid mechanics (Pergamon Press, Oxford, 1987)
[2] U Frisch, Turbulence (Cambridge University Press, Cambridge, 1995)
[3] R H Kraichnan, J. Fluid Mech. 5, 497 (1959)
[4] G Dar, M K Verma and V Eswaran, Physica D157, 207 (2001)
[5] J A Domaradzki and R S Rogallo, Phys. Fluids A2, 413 (1990)
[6] F Waleffe, Phys. Fluids A4, 350 (1992)
[7] M K Verma, A Ayyer, O Debliquy, S Kumar and A V Chandra, nlin.CD/0204027

(2004)
[8] D C Leslie, Development in the theory of turbulence (Oxford University Press, Claren-

don, 1973)
[9] Y Zhou, Phys. Fluids 5, 1092 (1993)
[10] W D McComb, The physics of fluid turbulence (Oxford University Press, Clarendon,

1990)
[11] M K Verma, Phys. Plasmas 8, 3945 (2001)
[12] M K Verma, Physica A277, 359 (2000)
[13] M K Verma, Phys. Rep. 41, 229 (2004)

Pramana – J. Phys., Vol. 64, No. 3, March 2005 341


