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Abstract. The exact solutions for the coupled non-linear partial differential equations
are studied by means of the mapping method proposed recently by the author. Taking
the coupled Schriodinger-KdV equation and DS equations as examples, abundant per-
iodic wave solutions in terms of Jacobi elliptic functions are obtained. Under the limit
conditions, soliton wave solutions are given.
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1. Introduction

It has long been known that the exact solutions to some non-linear partial diff-
erential equations (PDEs) can be explicitly expressed by the Jacobi elliptic func-
tions. Recently, searching for the Jacobi elliptic periodic wave solutions to the
non-linear PDEs attracts considerable interest [1-6]. The Jacobi elliptic functions
sn€ = sn(&|m), en§ = en(é|m), and dn& = dn(€|m), where m (0 < m < 1) is
the modulus of the elliptic function, are double periodic and possess the following
properties:

sn?é +en?€ =1, dn?€ +m2sn?¢ =1,

(sn)" = enédné, (cn€)' = —snédné,
(dn&)' = —m?snéené. (1)

When m — 0, the Jacobi elliptic functions degenerate to the triangular functions,
ie.,

sn& = sing, en€ — cos, dné — 1. (2)
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When m — 1, the Jacobi elliptic functions degenerate to the hyperbolic functions,
ie.,

sn€ — tanh &, cné — sech&, dné — seché. (3)

Detailed explanations about Jacobi elliptic functions can be found in [7-9]. On the
other hand, there are many methods for finding special solutions of a non-linear
PDE. Some of the most important methods are the inverse scattering transfor-
mation [10], the bilinear method [11], symmetry reductions [12], Bécklund and
Darboux transformations [13] and so on. Very recenlty, we proposed the map-
ping method [4-6] to obtain abundant travelling wave solutions to some non-linear
PDEs. In limit conditions, more solitary wave solutions and shock wave (kink wave)
solutions may be obtained. The basic idea of the mehtod is as follows: For a given
non-linear evolution equation, say in two independent variables,

N(u,ug,tg,...) =0. (4)
We search for its travelling wave solution of the form
U(Cﬂ,t) = ’U,(f), 5 =kx — Wta (5)

where k,w are constants to be determined. Without loss of generality, we define
k > 0. Substituting eq. (5) into eq. (4) yields an ordinary differential equation,
the solution of which is searched for in the form

u(@) = Aif, (6)
=0

where n is a positive integer that can be determined by balancing the linear term of
highest order with non-linear term in eq. (4), A; are the constants to be determined,
and f satisfies the elliptic equation of first kind

f=pftaf’, f7=pf +saf b (7

Here the prime denotes the derivative with respect to &, and p, ¢ and r are the
three parameters to be determined. After substituting eq. (6) into the ordinary
differential equation and using eq. (7), the constants A;, &k, w,p,q and r may be
determined. In general, if any of the parameters is left unspecified, then it is to
be regarded as arbitrary for the solution of eq. (4). The algebra mapping relation
is thus established through eq. (6) between the solution to eq. (7) and that of
eq. (4). If we assume f = tanh¢ in the expansion (6), the method is called tanh-
function method [14-16], f = sech ¢, sech-function method [17,18], f = sn&, ené,
dn&, Jacobi elliptic function method [1-3]. We choose eq. (7) because tanh £, sech &,
sné&, en€, and dné are all the solutions of it for the appropriate parameters p, ¢
and r, which will be seen in the study of the exact solutions to the systems in §2.
Thus we may obtain multiple exact solutions in the unified way by introducing eq.
(7) and much tedious and repetitive calculation can be avoided. In this paper, the
mapping method will be used to study the exact solutions for the coupled non-linear
PDEs. The outline of the paper is as follows: In §2 we obtain abundant Jacobi
elliptic periodic wave solutions to the coupled Schrodinger—-KdV equation and DS
equations and study their limit cases. In §3 we discuss our results and a simple
review of the mapping method is given.
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2. Application
2.1 The coupled Schrédinger—-KdV equation

The coupled Schrodinger—-KdV equation

U = Ugy + UL,
vy + GUUz + Vpga = (|u|2)m7 (8)

describes various processes in dusty plasma, such as Langmuir, dust-acoustic wave
and electromagnetic waves [19-21]. A kind of soliton solution was obtained by
Hase and Satsuma [22]. Here the abundant Jacobi elliptic periodic wave solutions
to eq. (8) will be reported and the limit cases are studied. For eq. (8), we seek the
following solution:

u= ()T, v = (9, 9)
where £ = kx — wt and ¢(&) and ¢ (€) are real functions. Substituting eq. (9) into
eq. (8), setting w = —2Kk and integrating the equation obtained above once, we

have

K¢" — (K* + Q)¢ + ¢y =0,

k2" 4+ 3¢° + 2K — ¢* = C, (10)
where C'is the integration constant. According to the mapping method, we assume
that eq. (10) has the solution of the form

¢ = Ao+ Aif + Asf?,

¢ =By + Bif + By f?, (11)
where A; and B; are constants to be determined, and f satisfies eq. (7). The
substitution of eq. (11) into eq. (10) and use of eq. (7) yields (equating the
coefficients of like powers of f) two kinds of solutions

A1 = Bl = 0, AQ = :|:3\/§qk2,

2 V2 2 2
By = —3qk*, Ao = j:?(lopk —3K° -3 -K),
1
By = —5(10pk'2 - 2K? - 20+ K),
5

1
N=-K’--K+ 5192\/4192 — 6qr, (12)

3
and
A0:A2231:0, BOZ—pk2+K2+Q,
By = —qk*, A} = +/q(2pk? — 6K2 — 2K — 6Q) k. (13)

Thus we obtain two kinds of exact solutions to eq. (8).
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2 )
Uy = i%(lopkz —3K2_-30— K) + 3\/§qk2f2(§) ez(Kz—Qt),
1
o1 = =5 (10pk? = 2K% = 20+ K) = 30k 12 (6), (14)
with
Q=-K>- %K + §k2\/4p2 — 6gr, (15)

where £ = kx + 2Kkt, f satisfies eq. (7) and K, k, p,q and r are arbitary constants,
and

uy = +1/q(2pk? — 6K2 — 2K — 69Q) kf(€)elKz=9)

vy = —pk? + K? + Q — gk* f(¢), (16)
where & = kxz + 2Kkt, f satisfies eq. (7) and K,Q,k,p,q and r are arbitrary
constants. We notice that in all the results of this paper, arbitrary constants

should make the expressions non-negative in the square root or denominator not
being zero. In what follows, we discuss the specific form of f according to eq. (7).

Case 1. p= —(14+m?), ¢ =2m? r = 1.

The solution of eq. (7) is f(§) =
periodic wave solutions to eq. (8).

up = { + ?[—10(1 +m?)k* —3K? - 3Q — K)]

sn&. Thus we get two kinds of Jacobi elliptic

:*:6\/57’)’7,2]{;28”2 (kl’ + QKkt) }ei(Kth)’

1
v = —5[—10(1 +m?)k* - 2K? - 2Q + K]

—6m?k?sn’®(kx + 2Kkt), (17)

with
0= K~ LK+ LRV m b, (18)

and

Uy = j:\/2[—2(1 +m2)k? — 6K? — 2K — 6Q)mksn(kx + QKkt)ei(Kx—Qt)’
vy = (14+m?)k? + K? + Q — 2m?k?sn” (kx + 2K kt). (19)

Asm — 1, eqs (17) and (19) degenerate to

i?(—QOkQ —3K? - 30 — K) + 6v2k? tanh® (kz + 2K kt) pilkz—0t)

1
v = —g(—20k:2 —2K? - 2Q 4 K) — 6k* tanh® (kz 4+ 2K kt), (20)
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with
1 10

Q:—K2—§Ki§k2, (21)
and

Uy = +1/2(—4k% — 6K2 — 2K — 6Q) k tanh(kz 4+ 2K kt)e! (K2 =5t

vy = 2k* + K2 4+ Q — 2k? tanh® (kz + 2Kkt), (22)
respectively.
Case2. p=2m?>—1,g=—-2m%, r=m?=1—-m?.

It follows from eq. (7) that f(§) = cné and eq. (8) has periodic wave solutions
up = { + §[10(2m2 - 1k? —=3K? - 30 — K]
+(—6v2)m?k2en? (kx + 2K kt) }ei(K””Qt),
v = —%[10(2m2 — Dk? = 2K? — 20 + K] + 6m*k*cn? (kx + 2K kt), (23)

with Q given by eq. (18), and

uy = £1/2[2(2m? — 1)k2 + 6K + 2K + 6Q mken(kx + 2K kt)e! Ko~
vy = —(2m® — DE* + K? + Q + 2m°k’cn’® (ka + 2K kt). (24)

Asm — 1, eqs (23) and (24) degenerate to

V2

up = |+ 3 (10k*> — 3K% — 30 — K) + (—6v/2)k?sech? (kz + 2K kt) | /(F==91)

1
v = —3(101@2 —2K? - 20 4 K) + 6k?sech? (kx + 2K kt), (25)

with Q given by eq. (21), and

uy = +1/2(=2k> + 6K2 + 2K + 69) ksech (kx + 2K kt)e' K7 =90,
vy = —k? + K% + Q 4 2k%sech? (kz + 2K kt), (26)
respectively.
2

Case3. p=2-m? qg=—-2,r = —m/>.

The solution of eq. (7) reads f(§) = dn{ and we obtain periodic wave solutions to
eq. (8).
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up = { + ?[10(2 —m?)k* - 3K? - 30 - K)

+(—6v2)k%dn® (kz + 2K kt) }ei(K’”_Qt),
1
v = —3[10(2 —m?)k? = 2K? - 2Q + K) + 6k*dn®(kx + 2K kt), (27)

with Q given by eq. (18), and

us = £v/2[22(2 — m?)k2 + 6K + 2K + 6] kdn(kz + 2K kt)e! Ko=),
ve = (2= M)k + K + Q + 2k%dn® (kz + 2K kt). (28)

As m — 1, from eqs (27) and (28) we obtain again eqs (25) and (26) respectively.
By choosing different values of p, ¢ and r in eq. (7), we can obtain other Jacobi
elliptic function wave solutions to eq. (8), such as nc, ndf, sc€, sd€ and ds€.
However, these solutions have singularity and we do not discuss them.

2.2 The DS equations

The Davey—Stewartson (DS) equation [23]

g + QUgg + Uyy + Blul*u — 2uv = 0,
Wy — Vyy — aB([uf*)ze = 0, (29)

where a = £1, § is a constant. Equation (29) with « = 1 and a = —1 are called
the DSI and DSII equations, respectively. These equations were introduced in order
to discuss the modulational instability of uniform train of weakly non-linear water
waves in the two-dimensional space. Here we will obtain a series of Jacobi elliptic
periodic wave solutions to eq. (29) for arbitrary constants o and . By means of
the mapping method and using the same procedure as the first example, we obtain
the exact solution to eq. (29) as follows:

N q(ak? —12)f(£)ei(Kx+Ly—Qt)’
g
C
V= — ok £2(6), (30)
with
2C
Q = —p(ak2—|—l2) +04K2+L2+ak27_0l2, (31)

where £ = kz + ly — 2(aKk + Ll)t, f satisfies eq. (7) and K, L, k,l,p,q and r are
arbitrary constants. In the following, we discuss the specific form of eq. (30).

Case 1. p=—(1+m?), ¢g=2m? r = 1.
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The periodic wave solution of eq. (29) reads

with

2k — [2 '
u ==+ % msn[k:n + ly _ 2(aKk + Ll)t]ez(Kx—i-Ly—Qt)’
Co 2.2 2
v = YRR + 2ak*msn’kx + ly — 2(aKk + LI)t],

2Cy

_ 2 2 2 2 2
Q—(].'FTTL)(CK/C +l )+CEK +L +m.

Asm — 1, eq. (32) degenerates to

with

Case 2. p=2m? — 1, ¢ = —2m?, r = m'%.

2(ak? — [2)

u== tanh[kz + ly — 2(aKk + Ll)t]ei(Kw+Ly—Qt),

v= % + 2ak? tanh®[kx + ly — 2(aKk + L)t],

2Cy

_ 2 2 2 2
Q=2(ak’+1°)+aK*+L tom

2

We have the exact solution to eq. (29)

with

—2(ak? — I2)
B

V= s — 2ak*m?*en’[kx + ly — 2(aKk + LI)t],

menlka + ly — 2(aKk + Li)t]ei(Ke+Ly=90)

2Cy

_ 2 2 2 2 2
Q——(2m —].)(Ckk +l )+CEK +L +m.

Asm — 1, eq. (36) degenerates to

with

—2(ak? — I2)

B
v= _G _ 2ak?sech®[kx + ly — 2(aKk + Li)t]
ak? — 12 ’

u== sechlkz + ly — 2(aKk + Ll)t]ei(Kw+Ly—Qt)’
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2Cy
Q= —(ak?® + 17 K24+ L2420
(k™ +1%) + oK~ + +ak2—12 (39)
Case3. p=2—-—m?,qg=—-2,r =—m'".
The exact periodic wave solution to eq. (29) is
_2 k.2 _ l2 )
u == % dnlkz + ly — 2(aKk + Ll)t]e!EetLly=2t)
v= _G 20k?dn’[kz + ly — 2(aKk + Li)t] (40)
ak? — 2 y )
with
Q:—(2—m2)(ak2+l2)+aK2+L2+2700 (41)
ak? — 12’

As m — 1, we obtain eq. (38) again from eq. (40).

3. Conclusion

Abundant Jacobi elliptic periodic wave solutions to the coupled Schréodinger—-KdV
equation and DS equations are obtained by means of the mapping method. The
limit cases are studied and soliton solutions are obtained. It has been shown that
only minimal algebra is needed to find multiple travelling wave solutions by the
mapping method. Moreover, this method is readily applicable to a large variety of
non-linear PDEs as long as odd- and even-order derivative terms do not coexist in
the equation under consideration.
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