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Abstract. We consider the presence of cosmic string-induced density fluctuations in
the early universe at temperatures below the electroweak phase transition temperature.
Resulting temperature fluctuations can restore the electroweak symmetry locally, depend-
ing on the amplitude of fluctuations and the background temperature. The symmetry
will be spontaneously broken again in a given region as the temperature drops there (for
fluctuations with length scales smaller than the horizon), resulting in the production of
baryon asymmetry. The time-scale of the transition will be governed by the wavelength of
fluctuation and, hence, can be much smaller than the Hubble time. This leads to strong
enhancement in the production of baryon asymmetry for a second-order electroweak phase
transition as compared to the case when transition happens due to the cooling of the uni-
verse via expansion. For a two-Higgs doublet model (with appropriate CP violation), we
show that one can get the required baryon asymmetry if fluctuations propagate without
getting significantly damped. If fluctuations are damped rapidly, then a volume factor
suppresses the baryon production, though it is still 3-4 orders of magnitude larger than
the conventional case of second-order transition.

1. Introduction

Density fluctuations produced by moving cosmic strings can have significant effect
on the phase transition in the early universe (see, e.g. ref. [1,2]). Here we discuss
the effect of these fluctuations on electroweak baryogenesis for the case of a second-
order electroweak phase transition [3]. We show that for a 10! GeV GUT cosmic
string, the resulting density fluctuations can give the required value of baryon-to-
entropy ratio (in the context of a two-Higgs doublet model as in [4], with the CP
violation parameter of order 10) if fluctuation propagates without getting signifi-
cantly damped. If on the other hand, if fluctuations are dissipated rapidly, then
a volume suppression factor reduces the produced baryon asymmetry, though it is
still 3—4 orders of magnitude larger than the conventional case where baryons are
produced during the cooling of the universe via expansion.

2. Baryon-to-entropy ratio with a second-order electroweak transition

For the conventional case of second-order electroweak phase transition when tran-
sition proceeds by the cooling of the universe due to its expansion, it was shown
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in ref. [4] that maximum baryon asymmetry created in the context of two-Higgs
doublet model is

By = |CnTT€|maxa (1)

where ¢, ~ 0.4 [4] for two-Higgs doublet model and e characterizes CP violation
parameter in the model value of which lies in the range 1-200 (ref. [4]).
If the departure from equilibrium is due to the expansion of the universe, then

one can calculate 7' from the Friedman equation and finally get the baryon-to-

entropy ratio, £ ~ ;i—g% With g, ~ 100 and T, = 110 GeV, we get [3],

B/s ~ 107!8¢. Thus, as discussed in ref. [4], even with most optimistic estimates of
e ~ 200, required baryon asymmetry cannot be generated for the case of standard
second-order phase transition.

3. Baryogenesis via density fluctuations produced by moving cosmic
string

To study the generation of density fluctuations due to cosmic string moving through
the relativistic fluid, we have followed ref. [5]. It was shown in ref. [5], that, if the
velocity of the cosmic string reaches the ultra-relativistic limit then the density
fluctuation becomes of order 1 (dp/p ~ 1) and the angle of the wake approaches
deficit angle ~ 87Gu. Here, u is the string tension. If the wavelength of the fluc-
tuation is much smaller than the horizon, then evolution of density fluctuation can
be written as [3], (6p/p ~ A ei(k™=“%)_Here, A is the amplitude of the fluctuation,
k is the wave vector and w(= 2mcg/A) is the angular frequency of the fluctuation
with wavelength A. For density fluctuations generated due to GUT cosmic string
moving with ultra-relativistic speed, the amplitude A ~ 1, and the shortest wave-
length (Acsme) is given by the average width of the generated wake ~ $87Gudn
~ 107% cm, where, dg (~ 0.1 cm) is the horizon size at that time.

With the use of local thermal equilibrium assumption, one can relate the density
fluctuation to the temperature fluctuation and finally can write the time-dependent
temperature field, T'(t) = Ty[1 + A sinwt]'/*, where T}, is the background temper-
ature of the plasma.

Using eq. (1) and from the above expression of temperature field, one can write
(3],

cner.JTb4

By = (n€TT)max = e (2)

For order of magnitude estimates, we take T" ~ T. The resulting baryon-to-
entropy ratio can now be expressed in terms of the amplitude A, and the wavelength
A of fluctuation [3],

B 45¢c,cs A N 0.01eA

= € ~ 3
S TG« 4/\Tb /\Tb ( )

Thus, for such fluctuations, the resulting value of baryon-to-entropy ratio is,
B/s ~ 10~ !e. For this case, with € of order 10, one is able to get the required
baryon asymmetry.
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Figure 1. Left: Variation of temperature (in GeV) with time (in GeV™")
for one oscillation period, resulting from density fluctuations with wavelength
A ~ 4xGudu. Right: Evolution of the Higgs field ¢ (solid line), and its vev
(dots), both in GeV.

It is important to realize that, if the fluctuations propagate without getting
significantly damped, then essentially all regions will participate in this generation
of baryon asymmetry, so there is no volume suppression factor here. However,
if the fluctuations do not propagate for large distances, and decay very rapidly,
then there will be volume suppression factor fs. Taking account of about 10 long
strings in a horizon volume, with typical wake thickness of order 10=%dy, we get
[3], fs ~ 10~*. With various factors taken as earlier, we get B/s ~ 10~%¢ for this
case. With optimistic value of € ~ 100, resulting value of B/s is 10713 about three
orders of magnitude smaller than the required one.

An important assumption in deriving eq. (1) (using which eq. (2) has been
derived) is that at any stage during the variation of the temperature, the value of
the Higgs field is essentially given by the vacuum expectation value (vev) at that
temperature. This assumption requires that the time-scale of temperature variation
should be much larger than the typical time-scale of the Higgs field evolution.
More importantly, as the temperature rises above T¢, the Higgs field should settle
down to value zero so that the electroweak symmetry is restored. For checking
this requirement, we take a simple effective potential to model the second-order
phase transition (ref. [6]), V(¢,T) = D(T? — T2)¢* + 2¢". We take the values of
the parameters as suitable for the standard model [6], T, = 110 GeV, D ~ 0.18
and A ~ 0.1. The evolution equation of ¢ (neglecting spatial dependence) is,

b+ %% + V' (¢, T(t)) = 0. Using this equation, we have checked the evolution
of ¢ (figure 1) for one oscillation period and shown that ¢ traces the evolution of
the vev faithfully.

4. Conclusion

We have studied the implications of small wavelength density fluctuations produced
by cosmic strings on electroweak baryogenesis in case of second-order phase tran-
sition. We have shown that for a 10'® GeV GUT scale cosmic string, the resulting
density fluctuations can give the required value of the baryon-to-entropy ratio (in
the context of a two-Higgs doublet model as in [4], with the CP violation parameter
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of about 10). If density fluctuations decay away rapidly, then the volume factor
suppresses the resulting baryon asymmetry by a factor of order 10~ (though it is
still larger by at least 3—4 orders of magnitude compared to the conventional case
of second-order phase transition).
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