Search for narrow-width $t\bar{t}$ resonances in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV

SUPRIYA JAIN (for the DØ Collaboration at FNAL, USA)
Tata Institute of Fundamental Research, Mumbai 400 005, India

Abstract. We present a preliminary result on a search for narrow-width resonances that decay into $t\bar{t}$ pairs using 130 pb$^{-1}$ of lepton + jets data in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. No significant deviation is observed from prediction of the standard model, and upper limits at 95% confidence on the product of the production cross-section and its branching fraction to $t\bar{t}$ are presented for narrow-width resonances, as a function of resonance mass M_X. We also use these limits to exclude the existence of a leptophobic top-color particle, X, with $M_X < 560$ GeV/c2 and width $\Gamma_X = 0.012 M_X$.

Particles with narrow width that decay to $t\bar{t}$ pairs are predicted by several theories beyond the standard model [1,2]. For instance, one of the scenarios of the top-color assisted technicolor model in ref. [2], predicts a heavy Z', that couples preferentially to the third quark generation, and not to leptons (leptophobic). The cross-section for the Z' in this model is large enough for it to be observed over a wide range of masses and widths in data available from the 1.8 TeV $p\bar{p}$ Tevatron collider at the Fermi National Accelerator Laboratory.

In searches for these heavy particles or $t\bar{t}$ resonances in the distribution of the invariant mass of the $t\bar{t}$ decay products, one seeks an excess beyond that predicted by the standard model. Previous searches from the Tevatron have limited a leptophobic Z' to a mass higher than 480 GeV/c2 [3]. In this paper we present a preliminary result based on a direct search for $t\bar{t}$ narrow-width resonances in the inclusive decay modes $t\bar{t} \rightarrow \ell \nu + 4$ (or more) jets, where $\ell = e$ or μ, using 130 pb$^{-1}$ of data recorded by the DØ experiment from 1992 to 1996.

We consider two orthogonal classes of events for this analysis, whose selection is based on: (a) a purely topological selection of lepton+jets events denoted as $e +$ jets and $\mu +$ jets, and (b) a selection based primarily in the presence of a muon contained within a jet (μ tag), and additional selections on the topology of the event. These events are denoted as $e +$ jets/μ and $\mu +$ jets/μ. The principal sources of background correspond to standard model $t\bar{t}$ production, production of a W boson in association with the requisite number of jets, with the W boson decaying into a lepton and its corresponding neutrino, and production of multijets ($N_j \sim 5$), in which one of the jets is misidentified as a lepton, with instrumental effects simulating sufficient missing transverse energy (E_T) that satisfies the neutrino requirement. The selections used to reduce the contribution from non-$t\bar{t}$ sources are summarized in table 1.
Table 1. Summary of event selections.

Lepton	$E_T > 20$ GeV	$	p_T	< 2$	$E_T > 20$ GeV	$	p_T	< 1.7$			
Jets	$E_T > 20$ GeV	$	p_T	< 2$	$E_T > 20$ GeV	$	p_T	< 1.7$			
μ tag	No	No	Yes	Yes							
Other	$	E_T	+	E_T'	> 60$ GeV	$	E_T	+	E_T'	> 60$ GeV	$E_T > 35$ GeV, $\Delta\phi(E_T, \mu) < 170^\circ$, if $\Delta\phi(E_T, \mu) < 25^\circ$
$	\eta	< 2$	$	\eta	< 2$	$\Delta\phi(E_T, \mu) < 170^\circ$, if $\Delta\phi(E_T, \mu) < 25^\circ$					

Events selected: 42 41 4 3

Figure 1. The DØ Run I 95% confidence level upper limits on $\sigma \times B$ as a function of resonance mass M_X. Included for reference are the predicted top color assisted technicolor cross-sections for a width $\Gamma_X = 1.2\% M_X$.

We perform a three-constraint (3C) kinematic fit to the $t\bar{t} \rightarrow l +$ jets, decay hypothesis [4], and require $\chi^2 < 10$ to further reduce non-$t\bar{t}$ background, whereupon 41 events are left in the data sample, of which 4 are μ-tagged.

We consider the resonance signal ($X \rightarrow t\bar{t}$) at nine different masses M_X between 400–1000 GeV/c^2, with a width $\Gamma_X = 0.012 M_X$. We then use Bayesian statistics [5] to fit the data m_T distribution to a three-source model comprised of signal ($X \rightarrow t\bar{t}$) at a resonance mass M_X, and the standard model backgrounds [4]. No significant
Search for narrow-width $t\bar{t}$ resonances

deviation is seen in the data $m_{T\bar{T}}$ distribution from standard model expectations for any of the resonance masses.

To conclude, after investigating 130 pb$^{-1}$ of the data, we find no statistically significant evidence for a $t\bar{t}$ resonance, and establish upper limits at 95% confidence on the product of the production cross-section (σ_X) of the resonance, X, and its branching fraction (B) to $t\bar{t}$, for M_X between 400 and 1000 GeV/c2. These limits are used to constrain a model of top-color assisted technicolor and exclude at 95% confidence, the existence of a leptophobic Z' [2] with mass $M_X < 500$ GeV/c2 and width $\Gamma_X = 0.012 M_X$, as shown in figure 1.

Acknowledgements

We thank the staff at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (USA), Commissariat à L’Energie Atomique and CNRS/Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), CONICET and UBACyT (Argentina), The Foundation for Fundamental Research on Matter (The Netherlands), PPARC (United Kingdom), Ministry of Education (Czech Republic), A.P. Sloan Foundation, and the Research Corporation.

References

[4] D0 Collaboration: V M Abazov et al, Search for narrow-width $t\bar{t}$ resonances in $p\bar{p}$ collisions at \sqrt{s} = 1.8 TeV, to be submitted to Phys. Rev. Lett.