Second invariant for two-dimensional classical super systems

S C MISHRA, ROSHAN LAL† and VEENA MISHRA‡
Department of Physics, Kurukshetra University, Kurukshetra 136 119, India
†Department of Computer Science, Govt. College, Kalka 133 302, India
‡Physics Department, Maitreyee College, Chanakyapuri, Bapudham, University of Delhi,
Delhi 110 021, India
Email: roshanhiranwal@yahoo.com

MS received 28 February 2002; revised 8 May 2003; accepted 21 May 2003

Abstract. Construction of superpotentials for two-dimensional classical super systems (for \(N \geq 2 \)) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

Keywords. Second constant of motion; super integrable system; Dirac’s constraints.

PACS No. 02.30.Ik

1. Introduction

There have been considerable efforts to identify integrable dynamical systems having both finite and infinite degrees of freedom by employing different techniques [1–11]. It is known that the invariance of evolution of equation under Lie transformations and generalisation lead to the integrability of the system. The Lie symmetry approach has been extensively used for the case of non-linear partial differential equation by various authors [3,4–7,12,13]. In classical dynamical systems, one expects the existence of additional invariants and subsequently tries to construct additional invariants if possible. Several authors have studied the problem of constructing an invariant (also called second constant of motion since first one is the total energy) for a two-dimensional system. With the same spirit, in this paper we make use of super time variable which involves the usual time \(t \) and Grassmannian variables \(\theta_i \) and \(\bar{\theta}_i \). Corresponding super position variable is given by

\[
Z_i = Z_i(t, \theta \bar{\theta}) = q_i(t) + i\theta \psi_i(t) + i\bar{\theta} \bar{\psi}_i(t) + \theta_i \bar{\theta} A_i(t), \quad i = 1,2.
\]

Equation (1) is associated to the super symmetry [14–17] transformations which emerges as one of the powerful creations in theoretical physics, where bosons turn into fermions and vice versa – a very interesting property for the description of fundamental
interaction in particle physics. Though there have been several attempts to test the integrability of two-dimensional classical systems, not much effort has been made to test the integrability for $N \geq 2$ super space in two dimensions. The super space formulation for $N = 1$ and $N = 2$ pseudo-mechanical systems has been studied in the context of dynamical invariance (super) symmetry associated with Pauli systems in the presence of magnetic mono-poles in one spatial dimension [3,18].

We obtain a time independent Euler–Lagrangian equation for super space Lagrangian on applying the Dirac’s constraints [18]. Here we address ourselves to the construction of second-order invariant involving the position, velocity and Grassmannian degree of freedom [3,19] for a couple of systems. The recipe could be prescribed to construct any integrable system in two spatial dimensions and could be generalised to classical systems with an arbitrary space and Grassmann finite degree of freedom. The method which we adopt [1–3,20] here is the one used earlier for the study of both time dependent and time independent classical systems in two dimensions. In §2, we derive the equation of motion and the general structure of the super potential of a dynamical system which involves second class Dirac’s constraints. We show how this constraints algebra help us to reduce the system to a time independent one. In §3, we obtain a set of coupled linear equations using graded bracket relation for the canonical conjugate variable where the existence of the second-order invariant for the super dynamical system under consideration is being assumed. A consistent solution of these equations yields the systems which are integrable. Alternatively, knowing the coefficients in the polynomial structure of the invariants, one can obtain a class of super potentials which furnish the integrable systems. In §4, we discuss some of the interesting potentials in their super forms and their integrability. Finally in §5, we describe the summary and conclusions, and the potentials under study in its super form.

2. Equations of motion and the constrained Hamiltonian systems

Let us consider the action of a system which is described by the integral equation

$$ T = \int dt \, L, \quad (2) $$

where

$$ L = \int d\theta_i d\bar{\theta}_i \mathcal{L} (Z_i, \bar{Z}_i, D_i \bar{Z}_i), \quad (3) $$

where \mathcal{L} is the super Lagrangian density, Z_i are the superposition variables given in eq. (1).

Let us define super derivatives D_i and \bar{D}_i as

$$ D_i = \partial_{\theta_i} - i \theta_i \partial_i, \quad (4) $$

and

$$ \bar{D}_i = \partial_{\bar{\theta}_i} - i \bar{\theta}_i \partial_i, \quad (5) $$

which satisfy the relation...
Second invariant for classical super systems

\[[D_i, \bar{D}_j]_+ = -2i \delta_{ij} \partial_t \] \hspace{1cm} (6)

and

\[\mathcal{L}'(Z_i, D_i Z_i, \bar{D}_i Z_i) = \frac{1}{2} \bar{D}_i Z_i D_i Z_i - W(Z_i), \] \hspace{1cm} (7)

where \(W(Z_i) \) is the superpotential which can be written by making Taylor series expansion as

\[W(Z_1, Z_2) = W(q_1, q_2) + i \tilde{\theta}_i(W'_{qi} \bar{\psi}_i) + i \tilde{\bar{\theta}}_i(W'_{qi} \psi_i) + \theta_i \tilde{\theta}_i(W''_{qi} A_i + W''_{qi} \bar{\psi}_i \psi_i), \] \hspace{1cm} (8)

where \(W'_{qi} = \partial W(q_1, q_2)/\partial q_i \) etc. The corresponding Euler–Lagrange equation becomes

\[\frac{\partial \mathcal{L}'}{\partial Z_i} - D_i \frac{\partial \mathcal{L}'}{\partial (D_i Z_i)} - D_i \frac{\partial \mathcal{L}'}{\partial (\bar{D}_i Z_i)} = 0, \] \hspace{1cm} (9)

which reduces to the following equation after using eq. (7):

\[\frac{1}{2}[D_i, \bar{D}_i]_+ Z_i = \frac{\partial W}{\partial Z_i}. \] \hspace{1cm} (10)

Using eqs (1), (7), (8) and (10) we obtain

\[A_i = W'_{qi}(q_1, q_2), \] \hspace{1cm} (11)

\[\dot{\psi}_i = iW''_{qi} \bar{\psi}_i, \] \hspace{1cm} (12)

\[\dot{\bar{\psi}}_i = -iW''_{qi} \psi_i, \] \hspace{1cm} (13)

and

\[\dot{q}_i = -W''_{qi} A_i - W'''_{qi} \bar{\psi}_i \psi_i = -W''_{qi} \bar{\psi}_i \psi_i - \frac{1}{2}(W''_{qi} \psi_i \bar{\psi}_i)' - \frac{\partial V}{\partial q_i}(W''_{qi}, W''_{qi} \psi_i, \bar{\psi}_i). \] \hspace{1cm} (14)

Hence the potential \(V \) becomes

\[V = \frac{1}{2} W_{qi}^2 + W''_{qi} \bar{\psi}_i \psi_i - \frac{1}{2}(\bar{\psi}_i \psi_i - \bar{\psi}_i \bar{\psi}_i). \] \hspace{1cm} (15)

Alternatively, using eqs (7), (8) and (10) in eqs (2) and (3) we get the Lagrangian as

\[L = \frac{1}{2} \dot{q}_i^2 + \frac{1}{2} A_i^2 - W''_{qi} A_i + \frac{1}{2}(\bar{\psi}_i \psi_i - \bar{\psi}_i \bar{\psi}_i) - W''_{qi} \bar{\psi}_i \psi_i. \] \hspace{1cm} (16)

Here this Lagrangian is constrained which satisfies the following primary constraints

\[\phi_1 = p_{\psi_i} + \frac{1}{2} \bar{\psi}_i. \] \hspace{1cm} (17)
S C Mishra, Roshan Lal and Veena Mishra

\[\phi_2 = p_q + \frac{1}{2} \psi, \]
\[\phi_3 = p_{A_i} \]
(18)

and also the secondary one is

\[\phi_4 = A_i - W_{q_i}', \]
(19)

where \(p_{\psi}, p_{\bar{\psi}}, p_{A_i} \) are canonically conjugate to \(\psi, \bar{\psi}, A_i \), respectively. The graded Poisson brackets of these constraints are being easily calculated from

\[[F, G] = \sum_i \frac{\partial F}{\partial x_i} \frac{\partial G}{\partial y_i} - (-1)^{|F||G|} \frac{\partial F}{\partial y_i} \frac{\partial G}{\partial x_i}. \]
(21)

where \(x_i, y_i \) are canonically conjugate and \(|F|, |G| \) are degrees associated with the dynamical variables \(F \) and \(G \), respectively. Here the constraints are second class and we find after replacing the original Poisson brackets by the Dirac brackets \[18\] defined by

\[[\psi, \bar{\psi}]_+ = \delta_{ij}, \quad [q_i, p_j]_+ = \delta_{ij}, \quad [q_i, q_j]_+ = 0, \quad [p_i, p_j]_+ = 0, \]
(22)

using the constraints, we obtain the Hamiltonian as

\[\mathcal{H} = \frac{1}{2} p_i^2 + \frac{1}{2} (W_{q_i}')^2 + W_{q_i}'\bar{\psi}_i \psi_i, \]
(23)

and the equations of motion as

\[\dot{p}_i = [p_i, \mathcal{H}]_+ = \bar{q}_i = - \left\{ \frac{1}{2} (W_{q_i}')^2 + W_{q_i}' \bar{\psi}_i \psi_i \right\}, \]
(24)

\[\dot{q}_i = [q_i, \mathcal{H}]_+ = p_i, \]
(25)

\[\bar{\psi}_i = [\bar{\psi}_i, \mathcal{H}]_+ = iW_{q_i}' \psi_i, \]
(26)

\[\dot{\psi}_i = [\psi_i, \mathcal{H}]_+ = -iW_{q_i}' \bar{\psi}_i. \]
(27)

These equations (eqs (24)–(27)) are equivalent to eqs (11)–(14) as they should. Here we see that Lagrangian depends explicitly on \(A_i \) variables appearing in eq. (16) only because of the super space formulation.

3. Construction of the second constant of motion

Here we write a general treatment of the construction of an invariant in two dimensions. We determine the coefficients involved in the corresponding terms which enable us to find the additional invariant.

Let us consider a dynamical system described by the Hamiltonian

\[\mathcal{H} = \frac{1}{2} \dot{q}_i^2 + \frac{1}{2} (W_{q_i}')^2 + W_{q_i}' \bar{\psi}_i \psi_i, \]
(28)
Second invariant for classical super systems

and we assume the invariant \(I \) as

\[
I = a_0(q_i, \psi_i, \bar{\psi}_i) + a_k(q_i, \psi_i, \bar{\psi}_i)\dot{q}_k + \frac{1}{2} a_{kl}(q_i, \psi_i, \bar{\psi}_i)\dot{q}_k\dot{q}_l
\]

(29)

and putting

\[
\dot{I} = \frac{dI}{dt} = 0 = [I, H],
\]

(30)

where \([,]\) denotes the graded bracket. Substituting eq. (29) in eq. (30) and after accounting for the proper symmetrization of the coefficients of \((\dot{q}_i)^n\) equal to zero for each \(n\), we get a set of differential equations satisfied by the coefficients \(a_0, a_k, a_{kl}:\)

\[
\frac{\partial a_{kl}}{\partial q_i} = 0,
\]

(31)

\[
\frac{\partial a_k}{\partial q_i} - i \left(\frac{\partial a_{kl}}{\partial \psi_i} \bar{\psi}_l + \frac{\partial a_{kl}}{\partial \bar{\psi}_i} \psi_l \right) = 0,
\]

(32)

\[
\frac{\partial a_0}{\partial q_k} - 2i \left(\frac{\partial a_k}{\partial \psi_i} \bar{\psi}_i + \frac{\partial a_k}{\partial \bar{\psi}_i} \psi_i \right) = a_{kl}(W_{qi} W_{qi} + W_{qi}^n \psi_i \psi_i) = 0,
\]

(33)

and

\[
a_i(W_{qi} W_{qi}^n + W_{qi} \psi_i \psi_i) + 2i \left(\frac{\partial a_0}{\partial \psi_i} \bar{\psi}_i + \frac{\partial a_0}{\partial \bar{\psi}_i} \psi_i \right) = 0
\]

(34)

Now, we present solutions of these equations for determining various coefficients. From eq. (31) we get

\[
a_{kl} = a_{lk} = \alpha_{kl} \psi_k \psi_l + \beta_{kl} \bar{\psi}_k \bar{\psi}_l,
\]

(35)

where \(\alpha_{kl}, \beta_{kl}\) are some constants. Let us put

\[
\alpha_{11} = \beta_{11} = \frac{1}{2} \alpha,
\]

(36)

\[
\alpha_{22} = \beta_{22} = \frac{1}{2} \beta
\]

(37)

and

\[
\alpha_{12} = -\alpha_{21} = \beta_{12} = -\beta_{21} = \frac{1}{2} \gamma \quad \text{(say)}
\]

(38)

in eq. (35) to obtain

\[
a_{11} = \frac{1}{2} \alpha (\psi_1^2 + \bar{\psi}_1^2),
\]

(39)

\[
a_{22} = \frac{1}{2} \beta (\psi_2^2 + \bar{\psi}_2^2),
\]

(40)
The coefficients a_{11} and a_{22} are zero since the variables ψ_i and $\bar{\psi}_j$ are Grassmannian and must satisfy
\[\psi_i \psi_j = -\psi_j \psi_i, \quad \bar{\psi}_i \bar{\psi}_j = -\bar{\psi}_j \bar{\psi}_i \]
and
\[\psi_i^2 = \bar{\psi}_i^2 = 0. \]

Now using eqs (39)–(42) in (32), we get a_k as
\begin{align*}
a_1 &= -i\gamma(\psi_1 \bar{\psi}_2 - \psi_2 \bar{\psi}_1)q_2 + C_1, \\
a_2 &= -i\gamma(\psi_1 \bar{\psi}_2 - \psi_2 \bar{\psi}_1)q_1 + C_2.
\end{align*}

For the sake of simplicity if we take $C_1 = C_2 = 0$ and substituting the values (39)–(42) and (43)–(44) in eq. (33), we get a_0 as
\[a_0 = 4\gamma(\psi_2 \bar{\psi}_1 + \psi_1 \bar{\psi}_2)q_1 q_2 - \frac{\gamma}{4}(\psi_2 \bar{\psi}_1 + \psi_1 \bar{\psi}_2) \left[\int (W'_{q_1} W'^{\prime\prime}_{q_1} + W'^{\prime\prime}_{q_1} \bar{\psi}_1 \psi_1) dq_2 \\
+ \int (W'_{q_2} W'^{\prime\prime}_{q_2} + W'^{\prime\prime}_{q_2} \bar{\psi}_2 \psi_2) dq_1 \right]. \tag{45} \]

One can get the invariant after determining these coefficients for certain systems and putting in eq. (29).

4. Examples

In this section, we illustrate some of the interesting potentials in their super form and their respective invariant.

4.1 Harmonic oscillator

Let us write the harmonic oscillator as
\[\frac{1}{2} W'^2(q) = \frac{1}{2} \lambda^2 q^2 \quad \text{or} \quad W'(q) = \lambda q. \tag{46} \]

Integrating eq. (46), we get
\[W(q) = \frac{1}{2} \lambda q^2. \tag{47} \]
Second invariant for classical super systems

One can write eq. (47) as

\[W(q) = \frac{1}{2} \lambda q^2 = \frac{1}{2} \lambda (q_1^2 + q_2^2), \]

(48)

where

\[q^2 = q_1^2 + q_2^2. \]

Hence

\[W(q_1, q_2) = \frac{1}{2} \lambda (q_1^2 + q_2^2). \]

(49)

Differentiating eq. (49) thrice in succession with respect to \(q_1 \) and \(q_2 \), we get

\[W'_q = \lambda q_1, \quad W''_q = \lambda, \quad W'''_q = 0, \]

\[W'_q = \lambda q_2, \quad W''_q = \lambda, \quad W'''_q = 0. \]

(50)

(51)

Now substituting eq. (50) and (51) in eq. (45), we get

\[a_0 = \frac{\gamma}{2} (8 - \lambda^3) \{ (\bar{\psi}_2 \psi_1 + \psi_2 \bar{\psi}_1) q_2 q_1 \}. \]

(52)

Further, from (39)–(44) we get

\[a_1 = i \gamma (\psi_1 \bar{\psi}_2 - \psi_2 \bar{\psi}_1) q_2, \]

(53)

\[a_2 = -i \gamma (\psi_1 \bar{\psi}_2 - \psi_2 \bar{\psi}_1) q_1, \]

(54)

\[a_{11} = \frac{1}{2} \alpha (\psi_1^2 + \bar{\psi}_1^2), \]

(55)

\[a_{22} = \frac{1}{2} \beta (\psi_2^2 + \bar{\psi}_2^2), \]

(56)

\[a_{12} = a_{21} = \frac{1}{2} \gamma (\psi_1 \psi_2 + \bar{\psi}_1 \bar{\psi}_2). \]

(57)

Substituting eq. (52) and eqs (53)–(57) in eq. (29), we get the invariant as

\[I = \frac{1}{2} \gamma (\psi_1 \psi_2 + \bar{\psi}_1 \bar{\psi}_2) \{ q_1 q_2 + (\lambda^3 - 8) q_1 q_2 \}

- \frac{i \gamma}{2} (\psi_1 \bar{\psi}_2 - \psi_2 \bar{\psi}_1) \{ q_2 q_1 + q_1 q_2 \}. \]

(58)

Correspondingly, we have the potential for the classical super system as

\[V(q_1, q_2) = \frac{1}{2} \lambda^2 (q_1^2 + q_2^2) + \lambda (\bar{\psi}_1 \psi_1 + \bar{\psi}_2 \psi_2), \]

(59)

and the superpotential as

\[W = (Z, \psi_i, \bar{\psi}_i) = \frac{1}{2} \lambda (q_1^2 + q_2^2) + i \lambda q_i (\theta_i \bar{\psi}_i + \bar{\theta}_i \psi_i)

+ \lambda^2 q_i^2 \theta_i \bar{\theta}_i + \lambda \theta_i \bar{\theta}_i \bar{\psi}_i \psi_i. \]

(60)
4.2 Kepler potential

Let us write the Kepler potential as

$$W^0(q) = -\frac{\lambda^2}{q} \quad \text{or} \quad W'(q) = \frac{i\lambda}{\sqrt{q}}$$

(61)

Integrating eq. (61) we get

$$W(q) = 2i\lambda\sqrt{q}.$$

(62)

Equation (62) can be written as

$$W(q_1, q_2) = 2i\lambda(q_1^2 + q_2^2)^{1/4}.$$

(63)

Again three successive differentiation of (63) with respect to q_1 and q_2 gives

$$W_{q_1} = \frac{i\lambda q_1}{\sqrt{q_0}},$$

(64)

$$W_{q_1}' = \frac{i\lambda}{2\sqrt{q_0}}(2q_2^2 - q_1^2),$$

(65)

$$W_{q_2}'' = \frac{i\lambda}{2\sqrt{q_0}}(2q_1^2 - q_2^2)$$

(66)

and

$$W_{q_1}''' = \frac{3}{4}\frac{i\lambda q_1}{q_1^{1/2}}(q_1^2 - 6q_2^2),$$

(67)

$$W_{q_2}'''' = \frac{3}{4}\frac{i\lambda q_2}{q_2^{1/2}}(q_2^2 - 6q_1^2).$$

(68)

Substituting eqs (64)–(68) in eq. (45), we get the expression for a_0 and putting back a_0, a_k, a_{kl} in eq. (29) we get the invariant as

$$I = 4\gamma(\psi_2\psi_1 + \psi_3\psi_4) \left[q_1q_2 + \frac{i\lambda^3}{16} \left(\frac{q_1 q_2}{2q^2} \left(\frac{1}{q_1^{3/2}} + \frac{1}{q_2^{3/2}} \right) \right) \right. \left. \right.$$

$$+ \frac{1}{2} \left(\frac{\tan^{-1}(q_2/q_1)}{q_1^{3/2}} + \frac{\tan^{-1}(q_1/q_2)}{q_2^{3/2}} \right) \right]$$

$$- \frac{6i\lambda^3}{11q} \left\{ \frac{q_1 q_2}{q^{10}} + \frac{5}{9q^8} \left(\frac{q_2}{q_1} + \frac{q_1}{q_2} \right) + \frac{40}{63q^6} \left(\frac{q_2}{q_1} + \frac{q_1}{q_2} \right) + \frac{80}{105q^4} \left(\frac{q_2}{q_1} + \frac{q_1}{q_2} \right) \right\}$$

$$+ \frac{320}{315q^2} \left(\frac{q_2}{q_1} + \frac{q_1}{q_2} \right) + \frac{640}{315} \left(\frac{q_2 q_1}{q_1^2} + \frac{q_1 q_2}{q_2^2} \right) \right\} + \frac{9}{4q} \left(\frac{41q_1 q_2}{195q^{12}} + \frac{56}{715q^{10}} \left(\frac{q_2}{q_1} + \frac{q_1}{q_2} \right) \right)$$

$$+ \frac{336}{2861q^8} \left(\frac{q_2}{q_1} + \frac{q_1}{q_2} \right) + \frac{2688}{20027q^6} \left(\frac{q_2}{q_1} + \frac{q_1}{q_2} \right) + \frac{16124}{100135q^4} \left(\frac{q_2}{q_1} + \frac{q_1}{q_2} \right)$$
We write the potential as

\[V(q_1, q_2) = -\frac{\lambda^2}{2q} + \frac{i\lambda}{q^{7/2}} \left[\frac{2q_2 - q_1^2}{q_2} \right] \psi_1 \psi_1 + \frac{1}{2q^2} \left[\left(\frac{q_2}{q_1} \right)^2 \psi_1 \psi_1 + (q_2^2 - q_1^2) \psi_2 \psi_2 \right] \]

\[+ \frac{64532}{300405 q^2} \left(\frac{q_2^2}{q_1^2} + \frac{q_1^2}{q_2^2} \right) + \frac{129064}{300405} \left(\frac{q_2^2}{q_1^2} + \frac{q_1^2}{q_2^2} \right) \]

\[- \frac{3i\lambda}{4q} \left\{ \psi_2 \left(\frac{q_1^2}{q_2^2} - 2 \right) \psi_1 + q_2^{3/2} \left(\frac{q_1 q_2^2}{q_2^2} + 2 \right) \bar{\psi}_2 \psi_2 \right\} \]

\[+ \frac{i\lambda}{2q} \left\{ - \frac{q_1 q_2}{q^2} (\psi_1 \psi_1 + \bar{\psi}_2 \psi_2) + \frac{1}{q^2} \left(\frac{q_1}{q_2} \bar{\psi}_1 \psi_1 + \frac{q_1}{q_2} \bar{\psi}_2 \psi_2 \right) \right\} \]

\[+ \frac{6}{35q^2} \left(\frac{q_2}{q_1} \bar{\psi}_1 \psi_1 + \frac{q_1}{q_2} \bar{\psi}_2 \psi_2 \right) + \frac{8}{35q^2} \left(\frac{q_2^2}{q_1^2} \bar{\psi}_1 \psi_1 \right) \]

\[+ \frac{q_1^2}{q_2^2} \bar{\psi}_2 \psi_2 \right\} + \frac{16}{35} \left(\frac{q_2}{q_1} \bar{\psi}_1 \psi_1 + \frac{q_1}{q_2} \bar{\psi}_2 \psi_2 \right) \]

\[- i\gamma (\psi_1 \bar{\psi}_2 - \bar{\psi}_1 \psi_2) (q_2 \dot{q}_1 + q_1 \dot{q}_2). \]

Correspondingly, the potential for the classical super system is

\[V(q_1, q_2) = -\frac{\lambda^2}{2q} + \frac{i\lambda}{q^{7/2}} \left[\frac{2q_2 - q_1^2}{q_2} \right] \psi_1 \psi_1 + (q_2^2 - q_1^2) \bar{\psi}_2 \psi_2 \]

\[+ \frac{3i\lambda}{4q} \left(\frac{q_1^2}{q_2^2} - 2 \right) \psi_1 + q_2^{3/2} \left(\frac{q_1 q_2^2}{q_2^2} + 2 \right) \bar{\psi}_2 \psi_2 \]

\[+ \frac{i\lambda}{2q} \left(- \frac{q_1 q_2}{q^2} (\psi_1 \psi_1 + \bar{\psi}_2 \psi_2) + \frac{1}{q^2} \left(\frac{q_1}{q_2} \bar{\psi}_1 \psi_1 + \frac{q_1}{q_2} \bar{\psi}_2 \psi_2 \right) \right) \]

\[+ \frac{6}{35q^2} \left(\frac{q_2}{q_1} \bar{\psi}_1 \psi_1 + \frac{q_1}{q_2} \bar{\psi}_2 \psi_2 \right) + \frac{8}{35q^2} \left(\frac{q_2^2}{q_1^2} \bar{\psi}_1 \psi_1 \right) \]

\[+ \frac{q_1^2}{q_2^2} \bar{\psi}_2 \psi_2 \right) + \frac{16}{35} \left(\frac{q_2}{q_1} \bar{\psi}_1 \psi_1 + \frac{q_1}{q_2} \bar{\psi}_2 \psi_2 \right) \]

\[- i\gamma (\psi_1 \bar{\psi}_2 - \bar{\psi}_1 \psi_2) (q_2 \dot{q}_1 + q_1 \dot{q}_2). \]

4.3 Potential $q^{-2/3}$

We write the potential as

\[W^{(2)}(q) = \lambda^2 q^{-2/3} \quad \text{or} \quad W' = \lambda q^{-1/3}. \]

Integrating eq. (72) we get

\[W(q) = \frac{3}{2} \lambda q^{2/3}. \]

Writing eq. (73) in terms of q_1, q_2, we have

\[W(q_1, q_2) = \frac{3}{2} \lambda (q_1^2 + q_2^2)^{1/3}. \]

Differentiating eq. (74) with respect to q_1 and q_2 successively thrice, we get

\[W''_q = \frac{\lambda q_1}{q^{4/3}}, \quad W'''_q = \frac{\lambda}{q^{4/3}} \left[1 - \frac{4q_1^2}{3q^2} \right] \]

Pramana – J. Phys., Vol. 61, No. 4, October 2003
and

\[W_{q_i}^{\text{eq}} = 4\lambda q_i (q_1^2 + q_2^2)^{-5/3} \left[\frac{10q_i^2}{9q_1^2} - 1 \right] . \] (76)

Using eqs (75) and (76) we obtain \(a_0 \) and again putting the coefficients \(a_0, a_k \) and \(a_{kl} \) in eq. (29) we write the invariant as

\[
I = 4\gamma (\bar{\psi}_2 \psi_1 + \psi_2 \bar{\psi}_1) \left[q_1 q_2 - \frac{\lambda^3}{54} \left(- \frac{q_1 q_2}{q_4} \right) - \frac{3}{4q_1 q_2} \right.
\]
\[
+ \frac{3}{16} \left(\frac{\tan^{-1}(q_2/q_1)}{q_1^2} + \frac{\tan^{-1}(q_1/q_2)}{q_2^2} \right) \right]
\]
\[
\left. - \frac{5\lambda}{27q} \left(\frac{59}{9} \left(\frac{q_2}{q_1^2} \bar{\psi}_1 \psi_1 + \frac{q_1}{q_2^2} \bar{\psi}_2 \psi_2 \right) \right)
\]
\[
- \frac{56}{27q^2} \left(\frac{q_2^3}{q_1^3} \bar{\psi}_1 \psi_1 + \frac{q_1^3}{q_2^3} \bar{\psi}_2 \psi_2 \right) \right]
\]
\[
\left. - \frac{4}{3} \left(\frac{\tan^{-1}(q_2/q_1)}{q_1^{1/3}} \bar{\psi}_1 \psi_1 + \frac{\tan^{-1}(q_1/q_2)}{q_2^{1/3}} \bar{\psi}_2 \psi_2 \right) \right]
\]
\[
\left. - \left(\frac{q_2^3}{q_1^{1/3}} (\tan^{-1}(q_2/q_1))^2 \bar{\psi}_1 \psi_1 + \frac{q_1^3}{q_2^{1/3}} (\tan^{-1}(q_1/q_2))^2 \bar{\psi}_2 \psi_2 \right) \right]
\]
\[
\left. + \frac{1}{3q^2} \left(\frac{q_2^3}{q_1^{1/3}} (\tan^{-1}(q_2/q_1))^3 \bar{\psi}_1 \psi_1 + \frac{q_1^3}{q_2^{1/3}} (\tan^{-1}(q_1/q_2))^3 \bar{\psi}_2 \psi_2 \right) \right]
\]
\[
\left. - \frac{2}{9q^2} \left(\bar{q}_1^{5/3} \tan^{-1}(q_2/q_1) \bar{\psi}_1 \psi_1 + q_2^{5/3} \tan^{-1}(q_1/q_2) \bar{\psi}_2 \psi_2 \right) \right\} - \frac{q_1 q_2}{8} \right] \right]
\]
\[
(77)
\]

Correspondingly, the potential for the classical super system is

\[
V(q_1, q_2) = \frac{\lambda}{q_2^{2/3}} \left[\frac{\lambda}{2} q_2^{-2/3} \left\{ \bar{\psi}_1 \psi_1 + \bar{\psi}_2 \psi_2 - \frac{4}{3q^2} (q_1^2 \bar{\psi}_1 \psi_1 + q_2^2 \bar{\psi}_2 \psi_2) \right\} \right] \]
\[
(78)
\]

and the superpotential is

\[
W(Z_i, \psi_i, \bar{\psi}_i) = \frac{3}{2} \lambda q_2^{2/3} + \frac{i \lambda q_2^{2/3}}{q_1^{1/3}} [\theta_i \bar{\psi}_i + \bar{\theta}_i \psi_i]
\]
\[
+ \theta_i \bar{\theta}_i \frac{\lambda}{q_2^{1/3}} \left[\frac{\lambda q_2^2}{q_2^{1/3}} + \left(1 - \frac{4 q_2^2}{3 q^2} \right) \bar{\psi}_i \psi_i \right] . \] (79)
Second invariant for classical super systems

5. Summary and conclusions

In this paper, we have demonstrated a method which furnishes the integrable systems in super space with spatial dimension $N \geq 2$. Invoking Dirac's constraints the dynamical system under consideration reduces to a time independent one. Three examples have been considered to discuss its integrability. As we know, the harmonic oscillator is an integrable system. However, the potential has been investigated as an integrable system in its bosonic and fermionic part using the method mentioned in this paper. The fermionic part which effectively involve the fermionic operator, implies that the super symmetry formalism could be envisaged as dealing with scalar spinors. We obtain the Kepler potential as integrable system in its bosonic and fermionic parts. In the same spirit, we find that the potential $q^{-2/3}$ [8] is also integrable. One can see that the last two cases, eqs (69)–(71) and eqs (77)–(79), however have yielded extra degeneracies in the corresponding quantum systems.

The above study would play a vital role in the domain of a variety of fields namely molecular physics, accelerator physics, plasma physics, laser physics etc. If the invariant is constructed for a system, it may help in reducing some non-linear dynamical problems to a quadrature [1,2,4,11]. These studies are capable of facilitating the reduction of the problem of the solution of equation of motion [9,10]. No doubt, in some cases the system is found to be integrable just by accident. These studies are also important in time dependent Kepler problem, alpha decay, time dependent gravitational constant and time varying mass for accelerating dynamical systems.

Acknowledgements

Authors wish to thank Prof. R S Kaushal for his interest in this work. We are also extremely grateful to the referee for his valuable suggestions.

References

 K C Tripathy, L K Tripathy, ICTP, Trieste, preprint No. IC/89/233 (1988)