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Abstract. We demonstrate that the process of matrix factorization provides a systematic mathemat-
ical method to investigate the Hamiltonian structure of non-linear evolution equations characterized
by hereditary operators with Nijenhuis property.
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1. Introduction

The factorization process for matrices has hardly been discussed in the literature for useful
application in mathematical physics. However, it has occasionally been noted in the context
of numerical analysis that Choleski’s method for matrix factorization [1] plays a role in the
solution of simultaneous equations as well as calculation of eigenvalues and eigenvectors
of matrices. This method can also be used to calculate the inverse of square matrices. Any
matrix A can be factorized as

A= LU; (1)

whereL andU are matrices of same dimension as that ofA. The matrixL is lower triangular
whileU is upper triangular. Specializing to a 3�3 square matrix, we write (1) in the form 

a11 a12 a13
a21 a22 a23
a31 a32 a33

!
=

 
1 0 0

l21 1 0
l31 l32 1

! 
u11 u12 u13
0 u22 u23
0 0 u33

!
: (2)

From (2), it is clear that the elementsui j and lkm can be obtained in terms ofaaps. The
process is, however, not unique. For example, the non-uniqueness could be demonstrated
by simply making different choices for the diagonal elements ofL. The object of the
present note is to point out the rationale of the matrix factorization method in the study of
canonical and/or Hamiltonian structure of integrable non-linear evolution equations.
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The Hamiltonian structure of non-linear evolution equations solvable by the inverse
spectral method was discovered in 1971 by Zakharov and Faddeev [2] and by Gardner [3]
who interpreted the Kortweg-de Vries (KdV) equation as a completely integrable Hamilto-
nian system in an infinite dimensional phase space with∂x = ∂=∂x as the relevant Hamil-
tonian operator. Almost simultaneously, hierarchies of infinitely many commuting vector
fields and constants of the motion in evolution for the KdV equation were constructed by
Lax [4] and by Gel’fand and Dikii [5] using the equation for squared eigenfunction of
the Schr¨odinger operator. Similar hierarchies were also obtained for other important non-
linear evolution equations by dealing with squared eigenfunction equation of the Dirac
operator [6]. In any case, the squared eigenfunction operator could be interpreted as an
operator generating higher symmetries [7] so as to have the name hereditary recursion
operator. Discovery of the recursion operator initiated further important development in
the Hamiltonian theory. For example, Magri [8] realized that integrable Hamiltonian sys-
tems have an additional structure, namely, they are bi-Hamiltonian systems. This implies
that they are Hamiltonian with respect to two different compatible Hamiltonian operators.
More precisely, if a hereditary operatorΦ can be factorized in terms of the Hamiltonian
operatorsJ1 andJ0 as

Φ = J1J�1
0 ; (3)

then the associated evolution equation is Hamiltonian with respect to bothJ1 andJ0. The
operators may possess Nijenhuis property [9]. The Nijenhuis operators are non-local and
non-locality ofΦ often poses problem to factorize it in the form (3).

In two recent papers, Ma [10] and Zhou [11] considered the Hamiltonian formulation of
the coupled KdV and Kaup–Newell systems of derivative non-linear Schr¨odinger (DNLS)
equations. The KdV systems have been extensively discussed in the literature and the KdV-
like equations appear in a wide variety of physical context. The DNLS equation was found
by Kaup and Newell [12] by slightly modifying the scattering problem of Zakharov and
Shabat [13] and that of [6]. This equation could account for the propagation of circularly
polarized Alfven waves in plasma. Looking closely into the works in [10] and [11], we
observe that the authors do not use any systematic mathematical method for their devel-
opment, rather they proceed by making use of their personal experience in dealing with
similar problems. To bring some order into the situation we demonstrate below that the
process of matrix factorization plays a central role both in constructing recursion operators
and in deriving the corresponding Hamiltonian hierarchies [10,11].

2. Matrix factorization and Hamiltonian structure of DNLS equations

To construct the recursion operator in [10], Ma proceeds by assuming two specific forms
for the matrix differential operatorsJ andM such thatΦ =MJ�1. We note that bothJ and
M are lower triangular matrices andMJ�1 has the form of (2) giving the standard formula
for matrix factorization. Further, since the elements of both matrices are simple differential
operators rather than integro-differential ones, there were no problems to determine the
coefficients multiplying the elements. The bi-Hamiltonian structure could also be derived
easily. The situation was slightly more complicated for the recursion operator in [11] where
the authors had chosen to work with the DNLS system. In this case,Φ is a matrix operator
whose elements are integro-differential operators. The specific form ofΦ is given by
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Φ =

� 1
2∂ � 1

2∂q∂�1r �

1
2∂q∂�1q

�

1
2∂ r∂�1r �

1
2∂ � 1

2∂ r∂�1q

�
: (4)

The Nijenhuis property of (4) tends to pose a problem to factorize it in the form (3). How-
ever, it is of interest to note that theΦ in (4) can be factorized in the form

Φ =

�
0 ∂
∂ 0

��
�

1
2

��
r∂�1r 1+ r∂�1q

�1+q∂�1r q∂�1q

�
(5)

giving

J1 =

�
0 ∂
∂ 0

�
(6)

and

J�1
0 =�

1
2

�
r∂�1r 1+ r∂�1q

�1+q∂�1r q∂�1q

�
: (7)

The operator can also be factorized as

Φ = J2J�1
1 ; (8)

whereJ2 is given by

J2 =

�
�

1
2∂q∂

�1q∂ 1
2∂ 2

�

1
2∂q∂�1r∂

1
2∂ 2

�

1
2∂ r∂�1q∂ �

1
2∂ r∂�1r∂

�
: (9)

The non-local nature of elements inΦ does not allow one to write it in any other factoriz-
able form. ThusJ0;J1 andJ2 form a Hamiltonian triplet for the DNLS equations giving a
tri-Hamiltonian–Lax hierarchy.

In the above context, it remains a problem to computeJ0 from J�1
0 . This can be done by

noting the identityJ0J�1
0 = I and assumingJ0 =Ci j . We thus write

�
C11 C12
C21 C22

��
r∂�1r 1+ r∂�1q

�1+q∂�1r q∂�1q

�
=

�
�2 0
0 �2

�
: (10)

From (10) we get

C11r∂�1r+C12(�1+q∂�1r) =�2; (11)

C11(1+ r∂�1q)+C12q∂�1q= 0; (12)

C21r∂�1r+C22(�1+q∂�1r) = 0; (13)

and

C21(1+ r∂�1q)+C22q∂�1q=�2: (14)
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It is important to note thatCi j s are partially decoupled in the set of equation from (11)–(14).
For example,C11 andC12 can be obtained from (11) and (12) only. However, in solving
them one must take proper care for the non-locality involved. To that end we re-arrange
(11) and (12) to write

(C11r+C12q)∂
�1r�C12=�2; (15)

and

(C11r+C12q)∂
�1q+C11= 0: (16)

Multiplying (15) and (16) byq andr respectively from the right and subtracting we find

C11r+C12q= 2q: (17)

From (15) and (17) we get

C12= 2+2q∂�1r: (18)

Again using (17) in (16) we haveC11 = �2q∂�1q. Similar considerations also apply for
(13) and (14), and we find all the elements ofJ0. Thus construction of the inverse operator
for the DNLS equations as carried out by Ma and Zhou [11] is now in order.

3. Conclusion

We conclude by noting that in deriving the bi-Hamiltonian formulation for a coupled KdV
system, Ma [10] has chosen to work with two specific forms for the matrix differential
operatorsJ andM such thatMJ�1 appears in the formLU . The process of matrix factor-
ization is, therefore, implicit in the canonical structure of coupled systems. Referring to the
work of Koup–Newell hierarchy [11] we observe that the hereditary recursion operator in
(4) was found by Maet al [14] only a few years ago. We have rederived the tri-Hamiltonian
structure and reconstructed the inverse operatorΦ�1 for the system using a strict mathe-
matical procedure involved in the matrix factorization method. The merit of the present
approach is that it does not rely on additional intuitive assumptions for the Hamiltonian
operators.

Acknowledgement

This work is supported in part by the Department of Atomic Energy, Government of India.

References

[1] A C Bajpai, I M Calus and J A Fairley,Numerical methods for engineers and scientists(Taylor
and Francis Ltd., London, 1975)

[2] V E Zakharov and L D Faddeev,Funct. Anal. Phys.5, 18 (1971)
[3] C S Gardner,J. Math. Phys.12, 1548 (1971)

164 Pramana – J. Phys.,Vol. 61, No. 1, July 2003



Hamiltonian structure of integrable systems

[4] P D Lax,Comm. Pure Appl. Math.21, 467 (1968)
P D Lax,SIAM Rev.18, 351 (1976)

[5] I M Gel’fand and L A Dikii, Usp. Mat. Nauk.30, 67 (1975)
I M Gel’fand and L A Dikii, Funct. Anal. Appl.10, 18 (1976)

[6] M J Ablowitz, D J Kaup, A C Newell and H Segur,Stud. Appl. Math.54, 249 (1974)
[7] P J Olver,J. Math. Phys.18, 1212 (1977)
[8] F Magri, J. Math. Phys.19, 1156 (1978)
[9] I M Gel’fand and I Ya Dorfman,Funct. Anal. Appl.13, 13 (1979)

[10] W X Ma, J. Phys.A31, 7585 (1998)
[11] W X Ma and R Zhou,J. Phys.A32, L239 (1999)
[12] D J Kaup and A C Newell,J. Math. Phys.19, 798 (1978)
[13] V E Zakharov and A B Shabat,Sov. Phys. JETP34, 62 (1973)
[14] W X Ma, Q Ding, W G Zhang and B Q Lu,Nuovo CimentoB111, 1135 (1996)

Pramana – J. Phys.,Vol. 61, No. 1, July 2003 165


