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Abstract. The dynamics of a self-gravitating unmagnetized, inhomogeneous, streaming dusty
plasma is studied in the present work. The presence of the shear flow causes the coupling between
gravitational and electrostatic forces. In the absence of self-gravity, the fluctuations in the plasma
may grow at the expense of the density inhomogeneity and for certain wavelengths, such an unstable
mode may dominate the usual streaming instability. However, in the presence of self-gravity, the
plasma inhomogeneity causes an overlap between Jeans and streaming modes and collapse of the
grain will continue at all wavelengths.
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1. Introduction

Interstellar grains are mainly composed of graphite, silicate and metallic compounds and
they comprise about 1% of the mass of the interstellar medium. Significant fraction of
these grains are charged [1]. Due to the low ionization fraction (10�7), these grains are
generally embedded in a weakly ionized plasma, and may lose or acquire an electron or
may remain neutral. It is not unusual to consider the grains of different sizes (micron or
less) and compositions, but only with�2e;�eor 0 electronic charges [2–4]. Umebayashi
and Nakano [4] indicated that electrically charged grains are rare in the dense molecular
clouds as these clouds are shielded from the UV radiation. However, in the HII region,
which are formed when a significant fraction of radiation from a new born star, or an
associated emission nebula, escapes without being absorbed by the in-falling matter from
the accretion disk, dust grain may pick up, depending on the thermal velocities of the
background plasma particles, between 10 to 100 electronic charges [1]. These charged
grains are not monochromatic in size. The size distribution of the interstellar grain has
been investigated by comparing the observed extinction curves with the theoretical one.
The observations do not fit to a single size and single composition [1]. Therefore, size,
mass and electronic charge of the grain may vary over a wide range. Further, it can be
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argued that at some stage of the condensation from gas to dust, circumstellar shells and
protoplanetary disks must have predominantly large dust grains.

The existence of large, massive, charged dust grain gives rise to the possibility of
overlap of gravitational and electromagnetic forces. For example, for grains of mass
md � 10�5g, with Zd � 10–100 electronic charges, two forces may become comparable,
i.e.,R= Gm2

d=(Zd e)2�O(1). HereR is the ratio of the gravitational and the electrostatic
forces,md is the grain mass,Zd e is the grain charge andG is the gravitational constant.
The overlap of electrostatic and gravitational forces may radically change the way the col-
lapse of the matter proceeds [5]. We anticipate that the gravito-electrodynamics of the
dusty plasma may play an important role at some stage of the star formation.

The dynamics of the self-gravitating dusty plasma have recently been studied by several
authors [5–14]. It has been shown that when self-gravity of the grain is balanced by the
electric polarization field of the plasma, condensation of the grain may occur due to the
background plasma properties [5]. However, background flow of the plasma is assumed to
be absent in most of these studies although interaction of the moving plasma with the dust is
a common feature of the interstellar medium. For example, the hot stellar wind emanating
from the star, interacts with the ambient partially ionized medium. However, mixing of
various constituents of the interstellar matter is a very slow process (� 109 years) [15].
Thus, the interstellar medium should be characterized by the large scale inhomogeneities.
Furthermore, such an inhomogeneity can lead to the existence of a large scale polarization
electric field [16]. Such a polarization field in turn will give rise to flows in the medium.
Therefore, it is important to study the dynamics of a self-gravitating dusty plasma in the
presence of equilibrium flows and fields.

It is well-known that the charge on the dust fluctuates, e.g., due to the attachment of
electrons and ions from the ambient background plasma, photoelectron emission, sput-
tering etc., and generally, is not constant. However, the variation of the grain charge is
described by the high-frequency (� mega-Hertz) kinetic processes whereas gavitational
instability is a low frequency process (� Hz). Therefore, we shall ignore the charge dy-
namics in the present investigation. The negligible effect of the charge fluctuation on the
Jeans collapse has been reported in the past [12].

The existence of a micro-Gauss (� 10�6) magnetic field in the interstellar medium is
well-known [17]. The charged grain will gyrate around the magnetic field. However,
simple estimates for the dust charge equal to 100e, with the particle mass 10�5g yield
� 1013 year gyration period, which is larger than the age of the galaxy (� 1010years).
Therefore, grains may be assumed unmagnetized, though under certain conditions, the
magnetic field may effect the grain dynamics, e.g. via ambipolar diffusion, etc.

2. Basic equations

A three-component, inhomogeneous dusty plasma consisting of electrons, ions and
charged dust grains is considered. The grains are assumed to have equal radius with iden-
tical charges. We shall assume that the plasma particle density is much smaller than the
dust density, i.e.,mene� mi ni �md nd and thus, the gravitational potential is solely de-
termined by the grain density. Then, the dynamics of the dusty plasma is described by the
following equations: the continuity equation
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∂nα
∂ t

+∇ � (nα~vα) = 0; (1)

for electron, ion and dust grains. The equation of motion for electrons and ions are,

mβ nβ

"
∂~vβ

∂ t
+~vβ �∇~vβ

#
=�Tβ ∇nβ �qβ nβ ∇φ �mβ nβ ∇ψ : (2)

Hereβ = e; i andv;P;T;φ ;ψ denote the velocity, pressure, temperature, electrostatic and
gravitational potential respectively. For cold dust grains, we have

mdnd

�
∂~vd

∂ t
+~vd �∇~vd

�
= Zd end∇φ �md nd ∇ψ : (3)

Hereqd = �Zd nd is the grain charge, which for definiteness, has been assumed negative.
The potential fields are defined by the following pair of Poisson’s equations

∇2φ =�4π e
�
ni�ne�Zd nd

�
; (4)

∇2ψ = 4π Gmd nd: (5)

The above set of eqs (1)–(5) completely describes the dynamics of a self-gravitating
dusty plasma.

2.1Equilibrium

The equilibrium of a self-gravitating dusty plasma may be defined by balancing the non-
linear convective term(~v�∇)~v with the self-gravity term or by balancing the self-gravity
against the electric field [5,16]. However,a priori, the existence of a non-zero equilib-
rium electric field and the consequent flow in a quasi-neutral plasma is unclear. In a self-
gravitating dusty plasma in the hydrostatic equilibrium, when pressure gradient term bal-
ances the self-gravity term, the plasma number density scale is proportional to the mass of
the plasma particle, i.e.,n(x)� exp(�mψ=T). In an electron–ion plasma, such a scale dif-
ference may not be significant. However, in a dusty plasma, the scale separation between
the dust number density distribution and electron and ion number density distribution is
very large. For example, for the interstellar grains withmd � 10�12 g andTd � 0:0001Te,
the ratio of the dust to the electron scale height (Ld=Le�md Te=meTd) and the dust density
scale turns out to be few parsec (1 parsec� 3� 1018 cm) for a few km electron scale-
length. This scale separation will give rise to a large scale electric field in a dusty plasma
medium [16]. We anticipate that such a field could exist in the interstellar medium, e.g.,
around early as well as late type stars, around proto-planetary disks, etc. It is physically
plausible that such a large scale field may induce large scale flows in the medium.

The overall charge neutrality of such a polarized medium is preserved. In order to de-
rive the scale over which the quasi-neutrality condition is respected, we first note that in
the presence of electric field, plasma number densities are given asn(x)� exp(�((mψ�
qφ)=T)). Then, ignoring the electron and the ion inertia in comparison with the dust iner-
tia, and imposing quasi-neutrality conditionni�ne�Zd nd = 0, one gets,φ=ψ �md=Zd e
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for a cold dust particle. Further, making use ofne;i(x)� exp(�Φ), whereΦ= eφ=Te;i , and
solving in terms of dust density, from eqs (4) and (5), one gets

nd(r) =
1

R�1
ne

Zd

�
exp(τ Φ)�

ni

ne
exp(�Φ)

�
; (6)

whereR= Gm2
d=(Zd e)2 Φ = eφ=Ti andτ = Ti=Te.

Making use of eq. (6) and approximating electron and ion number densities byn e;i =

n0(1�Φ) in me;i ! 0 limit, we can derive the scale of non-neutrality of a self-gravitating

dusty plasma. From eq. (6), one may writend � (R� 1)�1
(n0=Zd)2Φ, where we have

assumedτ = 1. Then, from Poisson’s equation (4), one getsL�2 Φ� 2λ�2
D Φ(R=(R�1)).

We see that the quasi-neutrality conditionL�2 λ 2
D� 1 is valid only ifR� 1. We recall that

R� 1 corresponds to a situation when self-gravity is much weaker than the electrostatic
interaction between plasma particles. Since self-gravity is the prime cause behind the
polarization of the medium, its feebleness is consistent with the quasi-neutrality condition.
In the R� 1 limit, the dust density vary as 1=R for Φ = constant, suggesting that the
difference between the electron and ion number densities has to increase as� R in order
to have a proper equilibrium force balance. For a givenR, the dust number density varies
as� exp(Φ), i.e., it becomes a function of the plasma potential which in turn, has been
generated by the polarization of the medium.

In the light of the above discussion, we shall assume a one-dimensional (alongx) steady
state, with an equilibrium between the electrostatic and the gravitational potentials in the
presence of shear flow. From eqs (2) and (3), for cold ions and dust, after integration,

v2
ix

2
+

eφ
mi

=Ci ; (7)

v2
dx

2
�

Zd eφ
md

+ψ =Cd: (8)

For inertia-less electrons,

ne= ne0 exp

�
eφ
Te

�
; (9)

wherene0 is the electron density atφ = 0. From continuity equation (1), after integration,
one gets

ni vix = ni0vi0 = fi ; (10)

nd vdx = nd0 vd0 = fd; (11)

nevex= ne0ve0 = fe; (12)

where fα and nα 0 are fluxes and densities of theα th species at some initial moment.
Making use of eqs (7) and (8) in (10) and (11), the ion and dust densities can be expressed
as

ni = fi

�
2

�
Ci�

eφ
mi

��
�1=2

(13)
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and

nd = fd

�
2

�
Cd+

Zd eφ
md

�ψ
��

�1=2

: (14)

Using eqs (9), (12) and (13), Poisson’s equation (4) can be written as

d2φ
dx2 =�4π e

(
ni0vi0h

2
�
Ci�

e
mi

φ
�i1=2

�
Zd nd0 vd0h

2
�
Cd+

Zd e
md

φ �ψ
�i1=2

�ne0 exp

�
eφ
Te

�)
: (15)

We see from eq. (15) that in the absence of a background flow of ions and dust particles,
thermal motion of electrons is responsible for the generation of a finite electric field.

It is interesting to investigate the relaxation of a polarized self-gravitating medium. In
order to study the relaxation, we shall expand the equilibrium in the asymptotic limit of
vanishing electrostatic potential. Expanding the above expression aroundφ = 0, in the
lowest order, one obtains

ni0 = Zdnd0+ne0; (16)

and, in the next order

d2φ
dx2 = 4πe2

 
ne0

Te
�

ni0

miv
2
i0

�
Z2

dnd0

mdv2
d0

!
φ =

�
k2

De�k2
Di�k2

Dd

�
φ : (17)

Here

k2
De

�
= λ�2

De

�
=

4πne0e
2

Te
; k2

Di =
4πni0e

2

miv
2
i0

=

ω2
pi

v2
i0

;

k2
Dd =

4πnd0(Zde)2

mdv2
d0

=

ω2
pd

v2
d0

;

whereωpi andωpd are the ion and dust plasma frequencies respectively. The role of the
right-hand side terms in eq. (17) varies. Whereas the first term represents the usual Debye
shielding, the remaining two terms represent the ‘anti-shielding’ [18]. Defining ion and
dust acoustic speed as

C2
s = λ 2

Deω2
pi; C2

ds= λ 2
Deω2

pd

and

χ�2
= λ�2

De

�
1�

�
C2

s

v2
i0

+
C2

ds

v2
d0

��
;

eq. (18) can be written as
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d2φ
dx2 �

φ
χ2 = 0: (18)

The solution of eq. (18) is

φ = A exp

�
�

x
χ

�
: (19)

The condition�
C2

s

v2
i0

+
C2

ds

v2
d0

�
= 1; (20)

corresponds to exact cancellation of the Debye shielding by the anti-shielding. This con-
dition arises when the bulk flow speed becomes sonic. In a quasi-neutral plasma, such a
situation arises at the plasma-charged layer boundary and the plasma potential is deter-
mined by its value at the boundary. Whenχ 2

= k2
De�k2

Di �k2
Dd < 0, i.e., when bulk flow

speed in the plasma becomes supersonic (a situation when anti-shielding will dominate the
shielding), the solution of eq. (18) becomes oscillatory and potential will have alternating
sign.

Since the self-gravitating dusty plasma is a polarized medium, the resultant flow induced
by the polarization electric field is responsible for the anti-shielding. The effect of the
anti-shielding will be felt by the gravitational potential as well. Expanding gravitational
potentialψ = ψ0+ψ1+ � � � aroundφ = 0, from Poisson’s equation (5) we have,

d2
�
ψ = ψ0+ψ1+ � � �

�
dx2 = 4π Gmd

nd0 vd0h
2
�
Cd+

Zd e
md

φ �ψ
�i1=2

: (21)

Then to the lowest order

d2ψ0

dx2 = 4π Gmd nd0; (22)

and in the next order,

d2ψ1

dx2 =�4π Gmd nd0

�
Zd eφ
md v2

d0

�
: (23)

Equation (23) indicates the coupling between the gravitational and electrostatic potentials.
Such a coupling could have been anticipated as dust density is responsible for both the
existence of the large scale polarization field and also acts as a source term for the gravita-
tional field. For the supersonic flow, when the electrostatic potentialφ becomes oscillatory,
the gravitational collapse of the dust will alternate between condensation and dispersion,
depending upon the sign ofφ .

We note that the expansion aroundφ = 0 does not imply ‘Jeans swindle’ as the swindle
involves leaving self-gravity unbalanced in the equilibrium. A self-gravitating plasma can
be visualized as a medium in which, finite electrostatic field is generated due to the pres-
ence of the self-gravity and such a field in turn, induces a large scale flow in the medium.
Therefore, in the asymptotic limitφ ! 0, self-gravity is balanced by the flow.
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We shall assume a scenario where Debye shielding is exactly cancelled by the anti-
shielding, i.e., (χ 2

= 0). This will amount to the presence of a constant electric field
E0 = �∂φ=∂x. It is clear that the choice of such an electric field intimately relates the
background plasma particle density to the dust particle density [5]. The departure from
perfect cancellation of the Debye shielding by the anti-shielding will lead to the generation
of an inhomogeneous electric field. For the present analysis, we shall assume a homoge-
neous electric field. Using eq. (11), one can define the inhomogeneity scale as

1
nd0

dnd0

dx
=�

1
vd0

dvd0

dx
= Kd: (24)

In a self-gravitating dusty plasma, gravitational and electrostatic forces may become com-
parable [R� O(1)], resulting in an asymptotic, homogeneous background [5].R� O(1)
corresponds toKd ! 0. Another consequence of the perfect balance of the two forces is
the shrinkage of the shear scale, since shear scale is a measure of the force imbalance.
Therefore, the presence of a finite, non-zero electric field, on the one hand, removes the
necessity of a ‘Jeans swindle’ and, on the other hand, makes the equilibrium flows uniform
(Kd ! 0).

3. Stability analysis

We shall perturb the physical variables around equilibrium quantities,nα(x) = nα0(x)+
ñα ; ~v(i;d) = v(i0;d0)(x)+ ṽ(i;d); φ = φ0+ φ̃ ; ψ =ψ0+ ψ̃. Here subscript zero denotes
the equilibrium quantities and tilde denotes their perturbed values. The linearized ion and
dust continuity eqs (1) are

�
∂
∂ t

+v(i0;d0)

∂
∂x

�
ñi;d+ ñi;d

dv
(i0;d0)

dx
+n(i0;d0)

"
∂ ṽ

(ix;dx)

∂x
+

∂ ṽ
(iy;dy)

∂y

#

+ ṽ(ix;dx)

dn
(i0;d0)

dx
= 0: (25)

The linearizedx andy component of the cold ion momentum eq. (2) is�
∂
∂ t

+vi0
∂
∂x

+
dvi0

dx

�
ṽix =�

e
mi

∇xφ̃ ; (26)

�
∂
∂ t

+vi0
∂
∂x

�
ṽiy =�

e
mi

∇yφ̃ : (27)

The linearized dust momentum equations (eq. (5)) are�
∂
∂ t

+vd0
∂
∂x

+
dvd0

dx

�
ṽdx =

Zd e

md
∇xφ̃ �∇xψ̃ ; (28)

�
∂
∂ t

+vdx0
∂
∂x

�
ṽdy =

Zd e

md
∇yφ̃ �∇yψ̃ : (29)
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The Poisson’s eqs (4) and (5) becomes

∇2φ̃ =�4π
�
e(ñi� ñe)�Zdñd

�
: (30)

∇2ψ̃ = 4π Gmd ñd: (31)

From eq. (9) we have

ñe

ne0
=

eφ̃
Te

: (32)

Equations (25)–(32) are a complete set of linearized equations. We recall that the per-
fect balance between the electric and gravitational forces (R= 1) will lead to a homoge-
neous dust density distribution (eq. (24)). If the ion density inhomogeneity scale is much
larger than the wavelength of the fluctuations, i.e.,Ki λx� 1, whereKi = (1=ni0)(dni0=dx),
λx = 2π=kx then in theR! 1 limit, we can Fourier analyze the perturbations as

exp�i (ω t�kx x�ky y). Then the continuity equation (25) can be written as

ñ(i;d)

n
(i;d)0

=

h
kx� iK

(i;d) ṽ
(i;d)x

i
+kyṽ

(i;d)y

D�

(i;d)

: (33)

Here

D�

α = Dα + i
dvα0

dx
; (34)

with Dα = ω � kxvα0 as the Doppler-shifted frequency. The ion momentum equation for
ṽix andviy yields

D�

i ṽix =
e
mi

kx φ̃ ; Di ṽiy =
e
mi

ky φ̃ : (35)

Similarly, eliminatingψ̃ in terms ofñd, and making use of

ṽdy=�
ky

Dd

��
Zd e

md

�
φ̃ +

ω2
J

k2

ñd

nd0

�
(36)

in eq. (33), and using the resulting expression for the perturbed density in terms of ˜v dx and
φ̃ the dust momentum equation for ˜vdx can be written as

D�

dṽdx =�

�
Zd e

md

�
kx φ̃ �

kxω2
J

k2

 
D�

d+
k2

y ω2
J

Dd k2

!

�

"�
kx� iKd

�
ṽdx�

�
Zd e

md

�
k2

y

Dd
φ̃

#
; (37)

wherek2
= k2

x + k2
y. Eliminating ṽix;iy and ṽdx in terms of φ̃ in eq. (30), and using the

resulting expression in the quasi-neutrality condition
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Zd ñd+ ñe� ñi = 0; (38)

one gets the following dispersion relation,

k2
De= ω2

pi

"�
k2� i kx Ki

�
Di + i k2

y
dvi0
dx

Di

�
D�

i

�2

+β

�
k2� i kxKd

�
Dd+ i k2

y
dvd0
dx

Dd

��
D�

d

�2
+ω2

J

�
1+ i

k2Dd

�
k2

y
dvd0
dx �kxKd Dd

���
3
775 : (39)

Here β = Z2
d(mi=md)(nd=ni). The dispersion relation, eq. (39) has been derived in the

kλDe � 1 limit. When G ! 0, the above dispersion relation reduces to eq. (28) of
ref. [18], except for their misprinted term withE0. We note that(k2

y ∂vix=∂x)=(k2Di) �

(ky=k)2 (Ki=kx)� 1 and((k2
y ∂vdx)=∂x)=(k2Dd) � (ky=k)2 (Kd=kx)� 1 in the local ap-

proximation (i.e.,kx � Ki ; Kd) and hence, the dispersion relation eq. (39) can be written
as

k2
De= ω2

pi

2
664
�
k2� i kxKi

�
�
D�

i

�2 +β
�
k2� i kxKd

���
D�

d

�2
+ω2

J

�
1�

i kx Kd

k2

��
3
775 : (40)

The above dispersion relation can be analyzed in different limiting cases. A detailed per-
turbative analysis of the above dispersion relation, in the absence of self-gravity, has been
carried out by Varma [18]. Thus, we shall restrict ourselves to the perturbative analysis
of a simple case before subjecting the dispersion relation to a numerical analysis in the
different limits.

DefiningV = (vi0+ vd0)=2, v= (vi0� vd0)=2, Ω = (ω � kxV)=2, ν = (kx v)=k; λ =

Ω=ν , one can writeDi = k(Ω� ν) = kν(λ �1), andDd = kν(λ +1), and thus, eq. (40)
can be recast as

1=

�
C�
ν

�2

2
664 1

(λ �1)2
+

β �

(λ +1)2+
�ωJ

kν
�2
�

1�
i kx Kd

k2

�
3
775 : (41)

In writing eq. (41), we have assumedKi ; Kd � kx. Here,C2
�
=C2

s (1� i kxKi=k2
), β �

=

β (1� i kxKd=k2
)=(1� i kxKi=k2

).
First we analyze the above dispersion equation (41) in the absence of self-gravity,ω J= 0,

andKi = Kd = K, i.e., when the ion and the dust inhomogeneity scales are equal. Then,
the above equation becomes

1=

�
C�
ν

�2
"

1

(λ �1)2
+

β �

(λ +1)2

#
: (42)

Solving eq. (42) perturbatively in the vicinity ofλ =�1+δ in δ � 1 limit, one gets
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"�
C�
ν

�2

�4

#
δ 2�4β �

�
C�
ν

�2

δ +4β �

�
C�
ν

�2

= 0: (43)

The roots,δ1;2 are

δ1;2 =

2β �

�
C
�

ν

�2

�
C
�

ν

�2
�4

2
6641�

vuuuut1�

�
C
�

ν

�2
�4

β �

�
C
�

ν

�2

3
775 : (44)

For realβ � andC� the root becomes unstable, if

�
C�
ν

�2

> β �

�
C�
ν

�2

+4: (45)

We note thatC
�=ν �Cs=v for ne� ni andkx � k. Thus, when the ion-acoustic speedCs

is greater than the relative drift speed between ion and dust particlesv�
�
vi0�vd0

�
, the

wave becomes unstable. This is the usual streaming instability. Next, we solve the dis-
persion relation, eq. (39) numerically for three cases: (a) whenkxKd=k2

= kx Ki=k2
= 0,

(b) whenKd = Ki = 0:5 and (c) whenKd 6= Ki . In figure 1, curve 1 corresponds to
kx Kd=k2

= kx Ki=k2
= 0 and curve 2 corresponds tokx Kd=k2

= 0:5 andkx Ki=k2
= 0. We

note that the growth rate of streaming instability in the presence of homogeneous ion and

Figure 1. Growth rate Im(λ ) is plotted for three cases: (a)Kd = Ki = 0, (b)
Kd 6= Ki ; Kd = 0:5; Ki = 0 and (c)Kd = Ki = 0:5, againstx = C=ν. Curve 1 in this
figure corresponds to the usual streaming instability in the absence of any inhomogene-
ity (case (a)); curve 2 shows the growth rate when inhomogeneity scales are unequal
(case (b)); and curve 3 corresponds to case (c) when both scales are non-zero and equal.
The presence of both ion and dust inhomogeneities (curve 3) do not affect the growth
rate of the streaming instability. However, presence of only dust inhomogeneity, curve
2 reduces the growth rate of streaming instability.
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Figure 2. Curves 1 and 2 correspond to the caseskxKd=k2 = 0:5, kxKi=k2 = 0 and
kxKd=k2 = kxKi=k2 = 0:5 in the absence of potential fields. We see that inhomogeneity
introduces a new unstable mode in a streaming dusty plasma and afterx> 3, this mode
starts dominating over the streaming mode. If only one type of inhomogeneity is present
(curve 2), the growth rate is smaller than when both dust and ion density distributions
are inhomogeneous. When the gravitational field is present((ωJ=kx v)2 = 0:5), the
growth rate is enhanced (curve 3). The Jeans mode couples with the streaming mode
for x� 1 and keeps growing after a dip in the curve.

dust density distribution (curve 1) is larger than when dust density distribution is inhomo-
geneous and ion density distribution is homogeneous (curve 2). When both ion and dust
density distribution is inhomogeneous and their inhomogeneity scale equals each other,
then the growth rate of the instability (curve 3) remains similar to the homogeneous case
(curve 1). When electric and gravitational fields are switched on, the streaming instability
remains almost unchanged.

In figure 2, curves 1 and 2 correspond to the cases whenkx Kd=k2
= 0:5; kx Ki=k2

= 0
andkx Kd=k2

= kxKi=k2
= 0:5 in the absence of potential fields. We see that the inhomo-

geneity introduces a new unstable mode in a streaming dusty plasma, and afterx> 3 this
new mode even starts dominating over the streaming mode. If only one type of inhomo-
geneity is present (curve 1), the growth rate is smaller than when both dust and ion density
distributions are inhomogeneous (curve 2). The free energy available for this instability
comes from the inhomogeneity of the plasma density distributions. When the gravitational
field is present(ωJ=kxv)2 = 0:5, first we see a coupling between the Jeans and the stream-
ing modes (curve 3). The coupling of the Jeans and the streaming mode is caused by
the plasma inhomogeneity. For smallx (� 0:7), Jeans mode dominates. This is consis-
tent with the fact that at large wavelength, gravitational instability will operate. However,
whenx > 0:7, streaming instability is excited. This has an interesting consequence for
the accretion of matter. The self-gravity can trigger the collapse at the long wavelength
and then, streaming instability takes over and facilitates the condensation at small wave-
lengths. Therefore, in an inhomogeneous plasma, the collapse of the matter may proceed
uninhibited at all wavelengths.
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4. Summary

In the present work, we have analyzed the dynamics of a self-gravitating, inhomogeneous
dusty plasma. We note that due to large scale differences between plasma particles, the
existence of an electric field and the resultant shear flow is a natural dynamical conse-
quence. The presence of flow has non-trivial effect on the plasma potential. When the
mean bulk flow speed of the plasma particles becomes sonic, the Debye shielding is comp-
letely removed. Furthermore, when the bulk flow speed becomes supersonic, the plasma
potential becomes oscillatory. The presence of oscillatory plasma potential will also make
the gravitational potential oscillatory.

The linear stability analysis of such a plasma shows that, apart from the usual streaming
instability, one will have an unstable mode caused by the inhomogeneity of the plasma.
In the absence of self-gravity, the inhomogeneity-induced mode may not be dominant be-
cause its growth rate is smaller than that of the streaming instability. However, when
self-gravity is present, this mode couples to the Jeans mode and, as a consequence, such a
plasma is unstable at all wavelengths. This may lead to the condensation of matter at all
scales. Therefore, the filamentation of the matter at small scales could be triggered by the
inhomogeneity-induced modes. Our results suggest that self-gravity and inhomogeneity
may play a complementary role in the condensation of matter, and may cause the matter to
condense at all scales.

References

[1] L Spitzer,Physical processes in the interstellar medium(John Wiley, New York, 1978)
[2] B G Elmegreen,Astrophys. J.232, 729 (1979)
[3] R Nishi, T Nakano and T Umebayashi,Astrophys. J.368, 181 (1991)
[4] T Umebayashi and T Nakano,Mon. Not. R. Astron. Soc.218, 663 (1986)
[5] B P Pandey, K Avinash and C B Dwivedi,Phys. Rev.E49, 5599 (1994)
[6] R Chhajalani and A Parihar,Astrophys. J.422, 746 (1994)
[7] K Avinash and P K Shukla,Phys. Lett.A189, 470 (1994)
[8] B P Pandey and C B Dwivedi,J. Plasma Phys.55, 395 (1996)
[9] L Mohanta, B J Saikia, B P Pandey and S Bujarbarua,J. Plasma Phys.55, 401 (1996)

[10] B P Pandey and G S Lakhina,Pramana – J. Phys.50, 1 (1998)
[11] C B Dwivedi, A K Sen and S Bujarbarua,Astron. Astrophys.345, 1049 (1999)
[12] B P Pandey, G S Lakhina and V Krishan,Phys. Rev.E60, 7412 (1999)
[13] B P Pandey, V Krishan and M Roy,Pramana – J. Phys.56, 95 (2001)
[14] B P Pandey and V Krishan,IEEE Trans. Plasma Sci.29, 307 (2001)
[15] L Spitzer,Astrophys. J.93, 369 (1941)
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