© Indian Academy of Sciences

PRAMANA — journal of physics Vol. 58, Nos 5 & 6 May & June 2002 pp. 1085–1088

Colossal magnetoresistance in layered manganite $Nd_{2-2x}Sr_{1+2x}Mn_2O_7 \ (0 \le x \le 0.5)$

K SHAH¹, D K ASWAL¹, AJAY SINGH¹, L C GUPTA², S K GUPTA¹ and V C SAHNI

¹Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

²Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

Abstract. The layered manganite $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$, with *x* varying between 0 and 0.5, has been synthesized using solid-state reaction method. We have found that $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$ do not form the single-phase layered compound with $A_3B_2O_7$ structure. Instead, mixtures of various phases, such as, orthorhombic perovskite, i.e., $Nd_{1-z}Sr_zMnO_3$, layered manganite and unreacted starting compounds, have been obtained. Except for x=0.4, which is found to be an antiferromagnetic insulator, all other *x* values yielded metal–insulator transition and ferromagnetic ordering.

Keywords. Colossal magnetoresistance; layered manganites; $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$.

PACS Nos 75.30.Vn; 71.30.+h

1. Introduction

The observation of colossal magnetoresistance (CMR) in layered manganites, which is n = 2 phase of Ruddlesdden–Popper (RP) series, i.e., $A_3B_2O_7$ structure (space group I4/mmm), has attracted considerable interest because of their two-dimensionality [1]. So far, majority of the research work has been centered on $La_{2-2x}Sr_{1+2x}Mn_2O_7$. This material, for x = 0.3–0.45, exhibits an insulator–metal transition (T_{IM}) at ~ 130 K, and a ferromagnetic ordering at temperature T_c , which is much higher than T_{IM} . The observation of $T_c \gg T_{IM}$ suggests that the double exchange mechanism alone does not explain the CMR in this material. On the other hand, the analogous compound $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$ has not been studied in detail. Interestingly, this material, for x = 0.45, is found to be an antiferromagnetic insulator but exhibited a CMR over a wide range of temperature [2]. However for x = 0.3, the material showed IM transition [3] and ferromagnetic ordering. In this paper, we report on the synthesis of $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$ series, with x varying between 0 and 0.5, and study their transport and magnetic properties.

2. Experimental

Polycrystalline $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$ samples were prepared using standard solid-state reaction method. Stoichiometric quantities of Nd_2O_3 , MnO_2 and $SrCO_3$ were calcined at

K Shah et al

Figure 1. XRD plots recorded for $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$ samples with different *x* values. The dotted line shows the peak corresponding to impurity phase Nd_2O_3 .

1200°C for 48 h. The material was reground, pelletized and sintered at 1250°C for 24 h. This process was repeated twice to obtain the homogeneous material. The phase identification in each case was carried out using X-ray powder diffraction (XRD). The magnetotransport measurements were carried out under an applied magnetic field of 1 T using standard four-probe resistivity technique.

3. Results and discussion

The XRD patterns recorded for $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$, with different *x* values, are shown in figure 1. It is seen that single-phase material with $A_3B_2O_7$ structure has not been formed for any of the *x* values. The lattice parameters for the major phase formed in each case were determined using the least square fitting and, the results are shown in table 1. For x = 0 and 0.1, the major phase formed is orthorhombic perovskite $Nd_{1-z}Sr_zMnO_3$. The layered $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$ phase with orthorhombic structure, as a major phase, is formed for *x* values between 0.2 and 0.4. The orthorhombicity $\{(a-b)/(a+b)\}$ is found to be minimum for x = 0.4. However, for x = 0.5 again $Nd_{1-z}Sr_zMnO_3$ phase is seen to be the major phase.

The temperature dependence of normalized resistance in zero and 1 T magnetic field is shown in figure 2a. It is seen that except for x = 0.4, all the samples exhibit an insulatorto-metal transition and a negative magnetoresistance. The T_{IM} is found to decrease with x. For x = 0 and 0.1, the highest MR was obtained in the vicinity of T_{IM} , while for other compositions a monotonous increase in MR with decreasing temperature was observed. The temperature dependence of magnetization for Nd_{2-2x}Sr_{1+2x}Mn₂O₇ samples is shown in figure 2b. Except for x = 0.4, which has an antiferromagnetic behavior, all other samples exhibit paramagnetic to ferromagnetic transition. The T_c was found to be ~ 275 K, which

Pramana – J. Phys., Vol. 58, Nos 5 & 6, May & June 2002

1086

Colossal magnetoresistance in $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$

x	Major phase	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)
0	$Nd_{1-z}Sr_zMnO_3$	5.434	5.801	7.698
0.1	$Nd_{1-z}Sr_zMnO_3$	5.45	5.812	7.697
0.2	$Nd_{2-2x}Sr_{1+2x}Mn_2O_7$	3.844	3.932	20.137
0.3	$Nd_{2-2x}Sr_{1+2x}Mn_2O_7$	3.844	3.91	20.137
0.4	$Nd_{2-2x}Sr_{1+2x}Mn_2O_7$	3.847	3.904	20.029
0.5	$Nd_{1-z}Sr_zMnO_3$	5.466	5.697	7.829

Table 1. Lattice parameters of the major phase formed during synthesis of $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$.

Figure 2. Temperature dependence of (**a**) normalized resistance (solid lines in zero field and dotted lines in 1 T magnetic field) and (**b**) magnetization for $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$ samples with different *x* values.

is much higher than T_{IM} . As mentioned in the introduction, $T_c \gg T_{IM}$, which has also been observed for La_{2-2x}Sr_{1+2x}Mn₂O₇, and several explanations for this have been proposed and are a subject of debate at present. The proposed explanations basically fall into two categories. In the first category, the observation of $T_c \gg T_{IM}$ has been attributed to the intrinsic character of this layered material. According to this explanation, the MnO₂ layers act like 2D ferromagnets at temperatures between T_{IM} and T_c and 3D ordering takes place around T_{IM} [4]. The second category of explanations suggests that the higher T_c is due to extrinsic phases [5]. Our results indicate that the difference in T_c and T_{IM} arises from the second mechanism. However, more experiments are needed to resolve the issue.

4. Conclusion

The layered manganite $Nd_{2-2x}Sr_{1+2x}Mn_2O_7$ (x = 0.0-0.5) has been synthesized and characterized for transport and magnetic properties. It has been found that this material does not form a single phase with layered $A_3B_2O_7$ structure. For x = 0.4, the material is antifer-

Pramana – J. Phys., Vol. 58, Nos 5 & 6, May & June 2002 1087

K Shah et al

romagnetic insulator and does not show CMR properties. For all other *x* values, the CMR properties arise due to the presence of extrinsic phases.

References

- [1] Y Moritomo, A Asamitsu, H Kuwahara, and Y Tokura, Nature 380, 141 (1996)
- [2] P D Battle, S J Blundell, M A Green, W Hayes, M Honold, A K Klehe, N S Laskey, J E Millburn, L Murphy, M J Rosseinsky, N A Samarin, J Singfleton, N E Sluchanko and J F Vente, J. Phys. Condens. Matter 8, L427 (1996)
- [3] J Zhang, F Wang, P Zhang, X Sun and Q Yan, J. Magn. Magn. Mater. 190, 166 (1998)
- [4] T Kimura, Y Tomioka, H Kuwahara, H Asamitsu, M Tamura and Y Tokura, *Science* 274, 1698 (1996)
- [5] N O Moreno, P G Pagliuso, C Rettori, J S Gardner, J L Sarrao, J D Thompson, D L Huber, A Garcia-Flores and S B Oseroff, *Physica* B292, 1 (2000)