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Scaling in the Bombay stock exchange index
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Abstract. In this paper we study Bombay stock exchange (BSE) index financial time series
for fractal and multifractal behaviour. We show that BSE index time series is monofractal and can
be represented by a fractional Brownian motion.
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1. Introduction

A lot of activity has been witnessed in recent times to study the nature of financial time
series. Econophysics [1–4] is an interdisciplinary field of research in which methods of
physics and mathematics are applied to analyse economic systems. Applying physics to
financial problems offers fresh look to existing theories of finance. On the other hand, the
availability of long term financial data and its behaviour on both at short and long time
scale offers new interesting challenges to physicists. Indeed, attempts have been made to
look for long range [3,5] and short range power-law correlation [6]. In this paper we will
study scaling behaviour of Bombay stock exchange (BSE) index of last one year from 1st
January 2000 to 31st December 2000 (shown in figure 1). We will useR=S analysis to
look for future trends and search for multifractal or Brownian motion features in its time
dependence.

Fractals have been applied in many fields of science like physics, biology, chemical
sciences, astrophysics and engineering sciences. However, it is not well known that the
concept of fractal originated from the field of economics when Mandelbrot was investigat-
ing the price changes dynamics of an open market in 1963 [7]. He found similarity between
various charts of market price changes (of cotton price) with different time resolution. He
came to the conclusion that such scale invariance could help to characterize many complex
phenomena seen in physical sciences. Mandelbrot [2] observed that price movements fol-
low a family of distributions which have high peaks and fat tails. Such distributions are
known as stable Paretian which have infinite or undefined variance.

537



Ashok Razdan

Figure 1. BSE index for the period from 1st January 2000 to 31st December 2000 [27].

2. Stock market returns: A new paradigm

Earlier it has been argued that genuinely competitive stock market, returns, follow random
walk model and are normally distributed [8]. Since stock market is a large system and
has large degrees of freedom (or investors), there is an underlying assumption that today’s
change in price is caused only by today’s unexpected ‘new’ information. This means that
today’s returns have nothing to do with yesterday’s behaviour and there are no ‘memory’
effects i.e. the returns are independent. This leads to the argument that the data of stock
prices and returns should follow normal distribution with stable mean and finite variance.
Because of this argument, capital market efficiency theories are mainly based on random
walk model or classical Brownian motion concepts. This approach means that information
arrives to an investor linearly and reaction of an investor to ‘linear’ information is instan-
taneous. This is based on the assumption that yesterday’s information has been already
folded into yesterday’s price.

However, the actual market data shows that returns are not normally distributed but
have higher peak than theoretically predicted around the mean and have fatter tails. Dow
Jones Industrial Index from 1963 to 1993 shows leptokurtic distribution [8]. Apart from
Dow Jones other stock exchanges of western countries also show non-normal behaviour
[8–11]. The presence of fatter tails indicate ‘memory’ effects which arise due to nonlinear
stochastic processes. Actually the information flow to an investor is clustered and its arrival
is irregular rather than continuous and smooth in nature. This clustered and/or irregular
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arrival of ‘new’ information results in periods of low and high volatility [2] which results
in ‘leptokurtic’ distribution instead of normal. This brings in a new paradigm in which
reaction of investor or trader to new information is ‘nonlinear’. To investigate the validity
of this new paradigm the concepts of chaos theory and fractals have been used extensively.
Models like ARCH and GARCH [12,13] have been used to include memory effects but
these models are not popular (mainly from physics point of view [3]) because they do not
take into account scaling property of the process.

3. Brownian motion and fractional Brownian motion concepts

In economics concept of classical Brownian motion [3,9] have been widely used to take
into account ‘memory effects’ which get revealed in the power law behaviour based on
random walk model.

Let x(t) be the position of particle (which is random function of time), then for Brownian
motion

x(t)�x(0) = ζ jt� t0j
h: (1)

The positionx(t) is obtained whenx(t0) is known and by choosing a random number
ζ from a Gaussian distribution. Here,h = 1

2 for classical Brownian motion (bm). In
Brownian motion it is not the position of the particle which is independent of its position
at another time but it is displacement of a given particle at one time which is independent
of its displacement at another time interval. Brownian motion is ‘self-affine’ by nature
[2]. A transformation that scales time and distance by different factors is called affine and
behaviour that reproduces itself under affine transformation is called self-affine [2]. Again
it was Mandelbrot ([2] and references therein) who introduced the concept of fractional
Brownian motion (fbm). Exponenth varies from 0 to 1 in the above equation for fractional
Brownian motion. Forh = 1

2, the time series is independent and un-correlated but the
distribution may not be Gaussian.

4. Hurst analysis: Search for fractal behaviour

Hurst invented a new statistical method called re-scaled range analysis (R=S analysis)
[2,14]. He was interested in developing the design of an ideal reservoir based upon the
given record of observed water discharges. Hurst developed a new exponent called Hurst
exponent (H) which can classify time series into random or non-random. Hurst exponent is
also related to fractal dimension. A measure of a signal ‘roughness’ is also given by Hurst
exponent. The ‘roughness’ of a profile can be defined by observing how signal ampli-
tudes vary in time (and in space if necessary), in particular the correlation between various
amplitude fluctuations.R=S analysis is a method for distinguishing completely random
time series from a correlated time series. The analysis begins by finding an average over a
chosen time period sayτ ,

hZiτ =
1
τ

τ

∑
t=1

Z(t): (2)
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Let X(t) be the accumulated departure of the influxZ(t) from the meanhzi τ .

X(t;τ) =
t

∑
u=1

(z(u)�hziτ): (3)

The difference between the maximum and the minimum accumulated influxX is the range
Rwhich is given as

R(τ) = maxX(t;τ)�minX(t;τ): (4)

Hurst used the dimensionless ratioR=S, whereS is the standard deviation which is given
as

S=

 
1
τ

τ

∑
t=1

(Z(t)�hziτ )
2

! 1
2

: (5)

Hurst found that the observed re-scaled range,R=Sratio for a time series is given as

R
S
=
�τ

2

�H
; (6)

whereH is the Hurst exponent. Using the above equation we can find exponentH. If
H is between 0.5 and 1, the trend is persistent which indicates long memory effects. This
also means that the increasing trend in the past implies increasing trend in the future also or
decreasing trend in the past implies decreasing trend in the future also. In contrast to this, if
H is between 0 and 0.5 then an increasing trend in the past implies a decreasing trend in the
future and decreasing trend in past implies increasing trend in the future. It is important to
note that persistent stochastic processes have little noise whereas anti-persistent processes
show, presence of high frequency noise.

The relationship between fractal dimensionsD f and hurst exponentH can be expressed
as [11]

Df = 2�H: (7)

So by finding Hurst exponent of a financial time series, we can find out the fractal dimen-
sion of the time series. WhenD f = 1:5, there is normal scaling. WhenD f is between 1.5
and 2, time series is anti-persistent and whenD� f is between 1 and 1.5 the time series is
persistent. ForD f = 1, time series is a smooth curve and purely deterministic in nature and
for D f = 1:5 time series is purely random. Long term correlations of indexes in developed
and emerging markets have been studied by using Hurst analysis and detrended fluctuation
analysis (DFA) as investigating tools [15]. However, it has been argued by Vandewalle and
Ausloos [16] that DFA analysis is better than Hurst scaling for short term time series.

5. Global Hurst exponent: Search for multifractal nature

In general, box counting method is being used for studying multifractal features [17–20]
but this method is mainly preferred for problems of spatial nature. However, to study
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multifractal nature of financial time series, alternative methods have been suggested [21].
This technique involves calculatingqth order height–height correlation function orqth
order structure function [21,22] of a normalised time seriesy(t i)

cq(τ) = hjy(ti+r)�y(ti)j
qi; (8)

where only non-zero terms are considered in the average, taken over all pairs (t i+r ; ti) such
that

τ = jti+r � tij (9)

and

cq(τ)� τη(q); (10)

whereq � 0 is the order of moment andη(q) is the scale invariant structure function
exponent. Forq = 1;H = η(1) is the ‘Hurst’ exponent characterising the scaling non
conservation of mean. Forq = 2, we obtainη(2) = β �1, whereβ is the slope of the
Fourier power spectrum. In generalη(q) is given by

η(q) = qH�
C1

α �1
(qα �q); (11)

whereC1 � d is an intermittency parameter,d is the dimension of space (hered = 1) and
α varies between 0 and 2.α is the Levy index. A multifractal process is characterised
by a nonlinear behaviour ofη(q) [23] because of multiplicative cascades whereas those
processes which are additive in nature,η(q) is linear or bi-linear. For Brownian motion
(bm), η(q)= q

2 and for fractional Brownian motion (fbm),η(q) = qH [24,25]. Thus for a
purely bm or fbm,η(q) is linear, whereas for multifractal natureη(q) is nonlinear.

6. Data analysis and results

Following the above discussion, we analyse BSE index data of year 2000 from 1st January
to 31st December which gives us 245 data points. Data from time financial series are
one dimensional and more simple to analyse than spatial one. For a financial time series
there are no holidays or weekends. In order to doR=Sanalysis data has been divided into
20, 40,: : :, 220, 240 parts. The next step is to calculateR=Sstatistics and plot it against
the corresponding sample length on double logarithmic plot as shown in figure 2. The
Gaussian asymptotic behaviour ofR=Swhich represents independent random process with
finite variances is given in line marked ‘b’ in figure 2 and can be written as

R
S
=
�πτ

2

� 1
2
: (12)

It is clear from this figure that data fits to the Hurst exponentH = 0:915. This value has
been obtained by fittingR=S= (Aτ)H to the observedR=Svalue. The parameterA= 0:61
for the fit given in the line marked ‘a’ in figure 2. This value ofH is an example of persistent
behaviour. Fractal dimension for BSE index time series isD f = 1:085. Large values ofH,
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Figure 2. Log (R=S) with log (τ). Curve ‘a’ corresponds to actual data and curve ‘b’ to
asymptotic theoretical expectation.

have been obtained for many naturally occurring phenomena like monthly sunspot activity.
In figure 3 we have plottedη(q) = qH(q), with q which has been obtained by calculating
structure function. We find thatη(q) has a linear relationship withq which as discussed
above shows that BSE index does not have multifractal nature but it represents a fractional
Brownian motion.

7. Conclusions

By usingR=Sanalysis, we are able to find fractal dimension of BSE index. We also ob-
served that trend in BSE index is Persistent for the Year 2000. This means if market is not
doing well in the year 2000, persistent trend will continue i.e. in future, market will con-
tinue to give low returns. If we see behaviour of BSE from January 2001 onwards, market
performance has not been good. The linear behaviour ofqH(q) values of BSE index withq
shows that signal is monofractal and data follows simple scaling behaviour for these values
of q. But it is important to note that we have used data of only one year comprising 240
data points. It will be interesting to look for multifractal features in short term (single day
data, but intra-day behaviour) or long term (may be decade or more) data of BSE index.
In other stock exchanges such studies have shown multifractal features [26]. It is impor-
tant to make such studies because market returns have been correlated to [26] multifractal
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Figure 3. η(q) = qH(q), has been plotted againstq for BSE index. It shows linear
behaviour indicating fractional Brownian motion.

features in the index data, more so when functioning of BSE will be more transparent from
July 2001 onwards, with the introduction of new market mechanisms like ‘OPITIONS’
and ‘FUTURES’.
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