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One-soliton solutions from Laplace’s seed
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Abstract. One-soliton solutions of axially symmetric vacuum Einstein field equations are pre-
sented in this paper. Two sets of Laplace’s solutions are used as seed and it is shown that the derived
solutions reduce to some already known solutions when the constants are properly adjusted. An
analysis of the solutions in terms of the Ernst potential is also presented. It is found that the solutions
do not reduce to the Euclidean form at spatial infinity. However, in the static limit, Weyl solutions
are obtained for half integral∂ -values.
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1. Introduction

The field equations in general relativity are highly nonlinear in nature and only simple
solutions are obtained by direct method. Different transformation techniques are thus de-
veloped by assuming certain symmetry properties of space-time, which give new solutions
from the old ones. The inverse scattering method (ISM) developed by Belinskii and Za-
kharov [1–3] is a useful technique of obtaining the solutions of nonlinear field equations
in general relativity. For some nonlinear differential equations it is possible to construct a
linear eigenvalue problem; the unknown functions of the original nonlinear equations are
included as the potential terms in the linear equations and integrability conditions of the
linear equations lead to the nonlinear equations [4].

Two important characteristics of the soliton technique are the ‘pole trajectories’ and the
background metric, called the ‘seed’ [5]. The solutions are identified by the number of
poles they contain. For example,N = 1 is a simple pole (i.e. one-soliton solutions),N = 2
is a double pole (i.e. two-soliton solutions) and so on. The background metric is chosen
suitably and one can get theN-soliton solutions from the given seed.

In x2, the inverse scattering method of Belinskii and Zakharov [1–3] is described in brief.
In x3, two sets of one-soliton solutions are presented which are obtained from two differ-
ent Laplace’s seed. It is known that in ISM, the determination ofΩ (the eigenfunction)
is not easy for a general seed metric. Verdaguer [6] obtained one-soliton solutions from a
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Euclidean seed and solved for eigenfunctionΩ. In this paper, we have taken two different
Laplace’s solutions as seed in the general static axially symmetric metric and obtained two
different sets of one-soliton solutions in the Verdaguer form. It is noted that the inclusion
of Laplace’s solutionψ in the general seed metric is reflected just as an additive term in
the Verdaguer result, obtained from Euclidean seed. Verdaguer’s result is thus generalized
to include a general static metric as seed. When certain restrictions are imposed on the
constants, the derived solutions reduce to the one-soliton solutions of Letelier [7] and un-
der a complex coordinate transformations these solutions correspond to the Van Stockum
metric [8]. An analysis of the solutions in terms of the Ernst potential is given inx4. Our
conclusion follows inx5.

2. Inverse scattering method

The general stationary axially symmetric metric can be represented by

ds2
= gabdxadxb

+ f (dr2
+dz2

); (1)

where the indicesa andb take the values 1, 2 andt;φ = x1;x2. Thegab and f are functions
of r andzonly. The Einstein equations for the metric (1) is obtained, in matrix form, as [2]

Ur +Vz = 0; (2)

[ln(r f )]r = (4r)�1Tr(U2�V2
); (3)

[ln(r f )]z = (2r)�1Tr(UV); (4)

where

U = rgrg
�1; V = rgzg

�1: (5)

The subscriptsr andz denote partial differentiations.
The idea behind ISM is that if we give the data of the analytic structure we can determine

the functional form of the potential which in turn gives rise to nonlinear terms of the field
equations. The steps followed in the method of solutions are:

(i) construct a linear eigenvalue equation where nonlinear terms are included in the
potential function,

(ii) solve the direct scattering problem with initial conditions,
(iii) from a known solution of the eigenvalue, reconstruct the potential function.

The integrability condition of eqs (3), (4) is eq. (2). Therefore, onceg is known, the
other metric coefficientf can be calculated from (3), (4). So the main problem is to find a
solution of (2) related to an eigenvalue – eigenfunction problem for some linear differential
operators. Such a system will depend on a complex parameter, sayλ . The solutions of the
matricesg;U andV will then be determined by the possible types of analytic structure of
the eigenvalues in theλ -plane. However, there does not exist any general algorithm for
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obtaining solutions of such a system. For stationary axially symmetric problems, Belinskii
and Zakharov introduced two differential operatorsD 1 andD2 in the form [1,2]:

D1 = ∂r +
2λ r

λ 2+ r2 ∂λ ; (6a)

D2 = ∂z�
2λ 2

λ 2+ r2 ∂λ ; (6b)

where∂ with a subscript denotes partial differentiation. The operatorsD 1 andD2 satisfy
the commutation relation

[D1;D2] = 0:

The next step of ISM is to look for a potential functionΩ, also called eigenfunction,
which depends onr;z and the complex parameterλ . BZ showed that the eigenfunctionΩ
satisfy the following eigenvalue equations [1,2]:

D1Ω =
rU +λV
λ 2+ r2 Ω; (7a)

D2Ω =
rV �λU
λ 2+ r2 Ω: (7b)

The eigenfunctionΩ is a two-dimensional matrix which reduces tog(r;z) when the
spectral parameterλ is set equal to zero i.e.,

Ω(r;z;λ )jλ=0 = g(r;z): (8)

For a known seedg0;U andV can be calculated from eq. (5) and the eigenfunctionΩ
is evaluated from eqs (7), (8). OnceΩ is known, physically realisticgph

ab
can be calculated

and thus new metric coefficients are determined. For oddN-soliton solutions, in order to
preserve the physically viable signature of space-time, one has to choose a non-physical
seed, because the odd soliton solutions produce a change of signature of space-time.

The results leading to the new solutions are summarized as follows:
For physically acceptable solutions we have the supplementary condition

detg0 =�r2; (9)

whereg0 is a 2�2 matrix associated togab.
The constructed stationary metric coefficientsg0

ab are obtained from the following rela-
tions [2,6]:

g0ab =

 
I �

N

∑
k=1

Rk

µk

!
g0; (10)

whereI is a unit matrix and
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(Rk)ab = n(k)a m(k)
b

; (11)

m(k)
a = m0(k)

c bΩ�1
0 (µk; r;z)cca; (12)

m0(k)
c = arbitrary constants,

Γkl �n
(l)
a =

1
µk

m(k)
c (g0)ca; (13)

Γkl =
m(k)

c (g0)cam(l)
a

µkµl + r2 : (14)

The polesµk are defined by

µk = ωk�z� [(ωk�z)2
+ r2

]
1=2; (15)

whereωk are arbitrary constants, may be called the origin of solitons and either of the plus
or minus sign before the square bracket in eq. (15) is allowed. Here,N is the number of
solitons i.e. the number of poles that appears in the scattering matrix.

The derived metricg0ab given in (10) is a solution of eq. (12) but in general, it does not
satisfy eq. (9). Physically acceptablegph

ab
are defined by [2]

gph
ab

=�r(�detg0ab)
�1=2g0ab; (16)

where

detg0ab = (�1)Nr2N

 
N

∏
k=1

1
µ2

k

!
detg0: (17)

The other metric coefficientf is calculated from the relation [6]:

f =C f0r�N2=2

 
N

∏
k=1

µk

!N+1
0
@ N

∏
k;l=1
k>l

(µk�µl)
2

1
A

�1

detΓkl; (18)

whereC is an arbitrary constant andf0 is the f -function of the static metric. For one-soliton

solutions (i.e.N = 1) the term

�
ΠN

k;l=1
k>l

(µk�µl)
2

�
�1

in eq. (18) becomes unity.

The problem of using inverse scattering method concentrates on the determination of
Ω, the eigenfunction, which is not easy for a general static axially symmetric metric used
as seed. However, as one requires the value ofΩ along the pole trajectoriesλ = µ k, the
problem of findingΩ is somewhat simplified [7]. We have taken advantage of that.

468 Pramana – J. Phys.,Vol. 58, No. 3, March 2002



One-soliton solutions

3. One-soliton solutions (diagonal seed)

Verdaguer [6] obtained one-soliton solutions starting from Euclidean seed metric. It is
then natural to examine the case when one chooses a static axisymmetric metric instead of
Euclidean metric as seed. In this section, we have taken two different static axisymmetric
metrics as seed and shown that it just introduces an extra additive term in the final ex-
pression for the derived metrics as given by Verdaguer. It is also shown that our solutions
correspond to some already known solutions. These will be mentioned in proper places.

We choose the diagonal seed solution of the metric (1) as

g0 = diag
�

r1�beψ ; r1+be�ψ
�

; (19)

whereb is a constant andψ = ψ(r;z) is a solution of Laplace’s equation

ψrr +ψzz+
ψr

r
= 0: (20)

Subscriptsr andz denote partial differentiations. Withψ = 0 andb= 1, the seed solution
becomes Euclidean.

Since the seed solution is diagonal, one might expect the corresponding eigenfunction
to be diagonal as well. The eigenfunction is then given in the following form

Ω = diag
h
(r2�2λz�λ 2

)
(1�b)=2eF ; (r2�2λz�λ 2

)
(1+b)=2e�F

i
; (21)

whereF is a function ofr, z, λ and

F(r;z;λ )jλ=0 = ψ(r;z): (22)

Equation (22) together with (21) satisfies (8).
With the help of eqs (10)–(21), the one-soliton solution of metric (1) is obtained as

ds2
= (�2)b�1C0

rb2=2

(r2+z2)1=2
cosh

�
χ �

1
2

bη +D

�
(dr2

+dz2
)

+
1

cosh
�
χ � 1

2bη +D
��� r1�beψ sinh

�
χ �

1
2
(b�1)η +D

�
dt2

+r1+be�ψ sinh

�
χ �

1
2
(b+1)η +D

�
dφ2

+(�1)b2r cosh

�
1
2

η
�

dtdφ
�
; (23)

where

χ = 2F �ψ ; (24)

is a function of (r, z, λ ); C0 andD are new arbitrary constants, while the functionη is
defined by

eη
= (µ=r)2: (25)
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It is evident that the solution presented in (23) corresponds to the one-soliton solution of
Letelier [7] forb= 1. On substitutingψ = 0 and introducing two parametersq1 andq2 in
the manner

q1 =
1
2
(1�b); q2 =

1
2
(1+b); (26)

our solution (23) reduces to that of Verdaguer [6]. It is interesting to note that the inclusion
of the termψ , a solution of Laplace’s equation, in the seed metricg0, has been reflected in
the Verdaguer’s result as an additive term in the hyperbolic function.

The static limit of solution (23) corresponds toD!∞. On substitutingψ = 0 andb= 1,
our solution in the static limit, reduces to the Weyl solution [9] with∂ = 1=2.

With ψ = 0 and redefining the parameterb according to (26), the solution (23) cor-
responds to the one-soliton cosmological type solution obtained from the Kasner seed.
However, forψ = 0 andb= 1, one obtains the solutions for an Euclidean seed metric.

It is observed thatD = 0;ψ = 0 andb= 1, the derived metric (23), under the complex
coordinate transformationst ! iφ andφ ! it , corresponds to the Van Stockum metric [8]

ds2
=C0r�1=2

(dr2
+dz2

)+2r dt dφ �2(z�ω)dt2: (27)

It appears from (23) and (24) that if the Laplace’s solutionψ and the functionF are
known, the stationary metric (23) is then completely given for a static metric as seed.F
satisfies the relations [7]

(r∂r �λ∂z+2λ∂λ )F = rψr ; (28)

(r∂z+λ∂r)F = rψz: (29)

Since the solutions are required at the poleλ = µ ; F depends on the value ofµ . We take
the plus sign before the square bracket in eq. (15) and consider real pole trajectories.

Prolate spheroidal coordinates(x;y) are used in the following analysis as we have taken
the Laplace’s solutionψ in that coordinate system. Prolate spheroidal coordinates are
defined by

r2
= K2

(x2�1)(1�y2
);

z= z1+Kxy; (30)

whereK andz1 are constants. The arbitrary constantωk in eq. (15) can be replaced by
shifting the origin along thez-axis by means of

ωk = z1+K: (31)

For one-soliton solutions, it is found that

µ = K(x+1)(1�y): (32)

The relations satisfied byF are

Fx =
(1+y)
2(x�y)

[(x�1)ψx+(1�y)ψy]; (33)

470 Pramana – J. Phys.,Vol. 58, No. 3, March 2002



One-soliton solutions

Fy =
(x�1)
2(x�y)

[(1+y)ψy� (x+1)ψx]: (34)

The subscriptsx andy denote partial differentiations. Here we have taken the values of the
eigenfunctionΩ and henceF on the pole trajectories only.

In the following, an application of the above simplified but general technique is given
and two sets of one-soliton solutions are constructed.

Set1: We take the Laplace’s solution in prolate spheroidal coordinates as

ψ = α0(x+y)�1; (35)

whereα0 is a constant.
From eqs (33), (34) one gets

F =
α0

2
(1+y)(x+y)�1; (36)

and from (24),

χ = α0y(x+y)�1: (37)

The metric coefficientgph
11

is thus found to be

gph
11 =�r1�bexp

�
α0

(x+y)

�
sinh

�
α0y(x+y)�1� 1

2(b�1)η +D
�

cosh
�
α0y(x+y)�1� 1

2bη +D
� ; (38)

where

η = ln

�
(x+1)(1�y)
(x�1)(1+y)

�
: (39)

It is observed that withb= 1, the solution (38) is not well behaved at spatial infinity, i.e,
it does not reduce to the Euclidean form. Withb= 1, whenx! ∞ andD ! ∞, eq. (38)
takes the form

gph
11 =�

�
1�y
1+y

�1=2

: (40)

With the symmetry of Ernst equation [10], one may interpret (40) as Weyl solution [8] for
half integer value of∂ .

Set2: In this case let the Laplace’s solution be

ψ = α0xy: (41)

It is found that

F =
α0

2
(x+xy�y); (42)
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χ = α0(x�y); (43)

and

gph
11 =�r1�beα0xysinh

�
α0(x�y)� 1

2(b�1)η +D
�

cosh
�
α0(x�y)� 1

2bη +D
� ; (44)

whereη is defined by (39). Now forb= 1 this solution also does not reduce to the Eu-
clidean form at spatial infinity.

4. Ernst potential of the solutions

In this section an analysis of the solutions presented in eq. (23) is given in terms of the
Ernst potential by proper adjustment of the constants.

For an axially symmetric stationary metric

ds2
= A�1

[e2γ
(dr2

+dz2
)+ r2dφ2

]�A(dt�Bdφ)2; (45)

the Ernst potential is given by [10,11]

E = A+ iΦ; (46)

whereΦ is known as the twist potential and it can be derived from the relations [12]:

Φr = r�1A2Bz; (47)

Φz =�r�1A2Br ; (48)

where the subscriptsr andz denote partial differentiations.
From eqs (1), (45) and (23) one obtains

A= r1�beψ sinh
�
χ � 1

2(b�1)η +D
�

cosh
�
χ � 1

2bη +D
� ; (49)

B= (�1)1+brbe�ψ cosh
�1

2η
�

sinh
�
χ � 1

2(b�1)η +D
� : (50)

Due to the presence of the superposing fieldψ in eqs (49) and (50), the evaluation ofΦ
becomes a complicated task. The real part of Ernst potential is obtained as

ReE = µr�beψ
(1�µ2r�2p)(1+ p)�1; (51)

where

P=

�µ
r

�2b
e�2(χ+D): (52)

In the static limitD ! ∞, one obtains the Ernst potential of the metric (23) as
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E = µr�beψ : (53)

With vanishing superposing field i.e. withα0 = 0 and substitutingb= 1�2q1, the solution
(53) reduces to that of Verdaguer equation (2.19) of ref. [6]. Further, whenD ! ∞ and
α0 = 0, if one substitutesb = �d, the solution presented in (51) corresponds to the one-
soliton solution(s= 1;h1 = 1) of Carot and Verdaguer for real pole trajectories (eq. (9) of
ref. [13]). The parametersd;s, andh1 are defined in ref. [13].

For Euclidean seed i.e., forb= 1 andα0 = 0, the Ernst potential of the solution (23) is
obtained as

E = [µr�1
(1�µ2r�2q)+ in(1�µ2r�2

)](1+q)�1; (54)

where

q=

�µ
r

�
e�2D (55)

andn is a constant given by

n�1
= eDcothD:

In the static limit i.e. atD ! ∞, the solution presented in (54) takes the form

E = µr�1: (56)

Now changing the coordinates(r;z) to (ρ ;θ ) in the following manner:

r = ρ sinθ ; z�ω = ρ cosθ ; (57)

one obtains

E =

�
1�cosθ
1+cosθ

�1=2

: (58)

Substitutingy= cosθ .

E =

�
1�y
1+y

�1=2

: (59)

Since the Ernst potential is symmetric inx andy, one can construct a new solution

E = i

�
x�1
x+1

�1=2

;

and it is only a trivial task to verify the static solution

E =

�
x�1
x+1

�1=2

: (60)

The solution (60) is not the Schwarzschild solution but it represents an asymptotically flat
Weyl solution with deformation parameter∂ =

1
2. If the above solution is generalized for

N-odd soliton solutions, Das [14] has shown thatE takes the form
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E =

�
x�1
x+1

�N=2

: (61)

This is the Weyl solution with∂ = N=2. The deformation parameter∂ is a measure of the
deviation from Schwarzschild space-times. A series of Weyl solutions can be obtained for
different values of∂ . The deformation parameter∂ can take any positive value in the Weyl
metric but it is restricted only to the integer values for Tomimatsu–Sato metrics [15].

Verdaguer [6] obtained a solution for∂ = 1=2. Das extended the solution for∂ = N=2,
whereN is an odd integer. Both of them used flat metrics as seed. We, in this paper,
have used a general static axisymmetric metric as seed and constructed a stationary metric
which can be reduced to their metrics when proper adjustment is made among the constants
appearing in the solutions.

The asymptotic expansion ofE in eq. (60) is obtained as

E = 1�
1
x
+

1
2x2 + � � � : (62)

In Boyer–Lindquist coordinates(R;Θ), which coincide with the spherical coordinates
(ρ ;θ ) for largeR,

Kx= R�m; y= cosθ ; m= constant; (63)

eq. (62) assumes the form

E = 1�
K
R
+

K(K�2m)

2R2 + � � � : (64)

The solution is thus asymptotically flat.
The real part of Ernst potential for the solution presented in Set 1, takes the asymptotic

form, with b= 1 as

ReE =

�
1�y
1+y

�1=2�
1+

(1+α0)

x
+

1
2

�
α0(α0�2y+1)+1

	 1
x2 + � � �

�
:

(65)

The solution is not spatially well-behaved at infinity. The derived solution (65) is singular
on the symmetry axis(y=�1) which represents a line source along the axis.

However, fory= 0, one obtains from (65),

ReE = 1+
(1+α0)

x
+
fα0(α0+1)+1g

2x2 + � � � : (66)

The solution (66) is asymptotically flat and contains monopole, dipole and other higher
mass multipole terms with monopole mass term(1+α0)=2. The constantα0 may be
interpreted as a measure of the strength of the superposing field.

5. Conclusions

We have presented in this paper the one-soliton solutions for two different Laplace seed
in the general axisymmetric metric. It is found that the derived metrics (eqs (38) and
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(44)) do not, in general, reduce to Euclidean form at spatial infinity. However, when one
truncates the solutions for static limit, Weyl solutions are obtained for half integral∂ -
values. Further, on imposing some restrictions on the constants appearing in the solutions,
our stationary solution (23) corresponds to the solutions of Verdaguer [6] and to the one-
soliton solutions of Letelier [7]. The inclusion of Laplace’s solutionψ in the general seed
metric is reflected just as an additive term in the Verdaguer’s result. The generated solution
after some readjustment of the parameters reduces to the one-soliton solution of Carot and
Verdaguer [13] for real pole trajectories.

The solution presented in Set 1, is singular on the symmetry axis(y = �1), thereafter
representing a line source along the axis. This solution becomes asymptotically flat for
b= 1 andy= 0 and contains the mass multipole terms.
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