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Abstract. We present a review of new results which suggest the existence offully stablespin-
ning solitons (self-supporting localised objects with an internal vorticity) in optical fibres with self-
focusing Kerr (cubic) nonlinearity, and in bulk media featuring a combination of the cubic self-
defocusing and quadratic nonlinearities. Their distinctive difference from other optical solitons with
an internal vorticity, which were recently studied in various optical media, theoretically and also
experimentally, is that all the spinning solitons considered thus far have been found to beunstable
against azimuthal perturbations.

In the first part of the paper, we consider solitons in a nonlinear optical fibre in a region of param-
eters where the fibre carries exactly two distinct modes, viz., the fundamental one and the first-order
helical mode. From the viewpoint of application to communication systems, this opens the way
to doubling the number of channels carried by a fibre. Besides that, these solitons are objects of
fundamental interest. To fully examine their stability, it is crucially important to consider collisions
between them, and their collisions with fundamental solitons, in (ordinary orhollow) optical fibres.
We introduce a system of coupled nonlinear Schr¨odinger equations for the fundamental and heli-
cal modes with nonstandard values of the cross-phase-modulation coupling constants, and show, in
analytical and numerical forms, results of collisions between solitons carried by the two modes.

In the second part of the paper, we demonstrate that the interaction of the fundamental beam with
its second harmonic in bulk media, in the presence of self-defocusing Kerr nonlinearity, gives rise to
the first ever example of completely stable spatial ring-shaped solitons with intrinsic vorticity. The
stability is demonstrated both by direct simulations and by analysis of linearized equations.

Keywords. Optical fibre; second harmonic generation.

PACS Nos 05.45.Y; 42.65.T; 42.81.D

1. Introduction

Solitons are self-supported localised packets, that can exist in various wave fields due to a
balance between the tendency of the light packet to spread out under the action of disper-
sion (in the temporal domain) and/or diffraction (in the spatial domain), and the opposite
tendency of the packet to self-focus under the action of the medium’s nonlinearity. Solitons
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in various optical media are especially interesting objects, due to both their fundamental
importance and a great potential for application to optical communications. The most
well-known example are solitons in optical fibres [1,2], that were theoretically predicted
by Hasegawa and Tappert in 1973 and experimentally observed by Gordon, Mollenauer,
and Tappert in 1980 (see a historical review in the book [2]). These solitons are expected
to form the basis of a new generation of fibre-optic communication superhighways. In
the development of optical communication lines with an extremely high bit-rate capacity
wavelength-division-multiplexing (WDM) plays a crucial role. This technique assumes
that a single fibre core may support many individual channels, each having its own carrier
wavelengthλ (with a separation∆λ � 0:5 nm between adjacent channels). Searching for
ways to further increase the number of channels carried by one fibre is the most important
direction for further development of optical telecommunications.

Solitons in the optical fibre are, essentially, one-dimensional (1D) objects. A class of ob-
jects with less immediate opportunity for applications, but of paramount physical interest
in their own right, are spatiotemporal solitons, i.e., fully localised objects moving at light
velocity in 2D and 3D media, in which case they are also known as ‘light bullets’ (LBs)
[3]. In the case of LBs, the most important issue is their stability, as ‘bullets’ in 2D and 3D
media with the usual Kerr nonlinearity are definitely unstable because of the wave-collapse
phenomenon [4]. The simplest way to possibly produce stable LBs, suggested long ago
by Kanashov and Rubenchik [5], is to use a medium with a quadratic (χ (2)) nonlinearity,
which does not give rise to collapse in any physical dimension. Properties of the corre-
sponding multidimensional solitons were studied in detail theoretically in works [6], using
direct simulations and also a semi-analytical approach, based on the variational approxi-
mation. This was followed by experimental observation ofquasi-2D solitons (which were
localised in the longitudinal and one of two transverse directions, but delocalised in the
other transverse direction) by Wise and his co-workers [7]. Thus far, truly 3D LBs have
not yet been observed.

Once the existence of multidimensional optical solitons has been established, a chal-
lenging generalization is to consider spinning, or vortex, solitons in an anisotropic bulk
medium. The internal vorticity inevitably creates a ‘hole’ inside the soliton, hence it will
have the form of a ring (‘doughnut’). Spinning solitons may exist in both 2D and 3D.
In fact, a 2D soliton with intrinsic vorticity may be construed either as a spinning 2D
spatiotemporal soliton, or as a spatial soliton (with no time dependence) in the form of
a spinning cylinder in a 3D medium, its cross section being an annulus due to the inter-
nal ‘hole’ induced by the vorticity. In the latter case, the corresponding spatial soliton is
frequently described as (2+1)D.

Direct simulations of the spinning 2D solitons inχ (2) media (as well as in media with
a saturable nonlinearity) have demonstrated that they, unlike their stable zero-spin coun-
terparts, are subject to a strong instability against azimuthal perturbations that destroy the
soliton’s rotational symmetry, and eventually split it into several fragments which fly out
in tangential directions [8]. This instability was also confirmed by a direct experiment with
(2+1)D solitons [9]. Fully 3D spinning solitons inχ (2) media can be found too, and they
also turn out to be strongly unstable against azimuthal perturbations [10].

Another possibility is to consider a medium characterised by a combination of focusing
cubic and defocusing quintic nonlinearity, which is known to be an adequate model for
the so-called PTS optical crystal [11]. First, numerical simulations demonstrated that a
spinning 2D soliton in such a model seems quite stable [12]. Next, direct simulations of
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the spinning solitons in the same cubic-quintic model have revealed that the solitons are
always subject to the azimuthal instability, but the instability may be fairly weak if the size
of the soliton is essentially larger than the radius of its internal hole [13]. In the latter case,
the spinning soliton may be a virtually stable object in an experiment. In fact, the same
pertains to the 2D solitons: the stability reported in [12] is, actually, a weak instability,
masked by relatively short simulation runs.

Thus, the challenge is to seek a realistic nonlinear optical models which may generate
truly stable spinning solitons. In this paper, we demonstrate that this is possible both in the
usual optical fibre, provided that it admits the propagation of the lowest-order helical mode,
and in a bulk medium combiningχ (2) and self-defocusingχ (3) (cubic) nonlinearities.

2. Helical solitons in optical fibres

2.1 Formulation of the problem

A commonly adopted approach to the description of nonlinear light propagation in optical
fibres is based on the separation of the transverse modal structure, that may be described
in the linear approximation, and slow longitudinal and temporal evolution of the signal’s
envelope, which is essentially affected by the temporal dispersion and Kerr nonlinearity.
This type of analysis leads to the derivation of the nonlinear Schr¨odinger (NLS) equation
for the envelope [1,2].

Usually, both experimental and theoretical studies of the soliton propagation are con-
fined to the case when parameters of the fibre admit a single (fundamental) transverse
mode, because in a multimode fibre an initial pulse excites different modes in an uncon-
trollable fashion. However, using well-known data for fibres of the simplest step-index
type [14], it is easy to find that a situation with exactly two modes takes place when the
standardwaveguide parameter

V � kρ
q

n2
co�n2

cl; (1)

wherek, ρ andnco;cl are, respectively, the carrier wave’s propagation constant, core radius,
and the refractive index in the core and cladding, takes values

2:405<V < 3:832: (2)

For instance, in the case of the standard carrier wavelength (λ = 1:54µm) admitting soliton
propagation in optical fibres, and taking the usual valuenco�ncl = 0:01, the interval (2)
implies 3µm< ρ < 4:75µm, i.e., quite realistic values of the core’s radius.

Inside the interval (2), the fibre carries a fundamental mode (FM) and the first he-
lical mode (HM). The transverse structure of the latter is described by the expressions
J1(Ur)exp(�iθ ) in the core andK1(Wr)exp(�iθ ) in the cladding, whereJ1 andK1 are
the standard cylindrical functions,U andW are the associate waveguide parameters de-
fined in the usual way [14], and (r, θ ) are the polar coordinates in the fibre’s cross section.
In this case, one is actually dealing with a set of three coexisting modes, as there are two
degenerate HMs with the helicitiesS= �1. Note also that, because the physical fields
are proportional to the real part of the complex expressions, the presence of the multiplier
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exp(�iθ ) means that HM solitons are indeedspinningin the course of propagation along
the fibre.

As neither higher-order radial (nonhelical) modes, nor any HM with a helicity> 1 exists
in the interval (2), the two-mode situation is controllable: a light pulse with zero helicity
can excite solely the FM, while excitation of the HM is possible by a pulse that carries
the necessary helicity. A light beam can be lent helicity, passing it through a specially
designed phase mask, which is quite feasible in a real experiment, see, e.g., the above-
mentioned work [9], where this technique was employed to create a spatial cylindrical
soliton with the intrinsic vorticity. Due to their distinct topological nature, FMs and HMs
do not mix linearly, provided that the fibre remains circular. It is indeed easy to fabricate
a long silica fibre whose deviation from circularity is negligible. Bending of the fibre will
induce no linear mixing either, providing that the bending radius is much larger than the
wavelength. In this paper, however, we do not discuss exact limitations on the deviation of
the fibre from circularity and similar details. Instead, we focus on principal issues, such as
collisions between solitons carried by FMs and HMs.

It is necessary to distinguish between the fundamental and helical solitons at the receiver
end of the fibre. In an experiment with a single or a few copropagating carrier frequencies,
this is quite simple, as the fundamental and helical modes have an appreciable difference
in their propagation constants (see below), thus the two types of the solitons can be dis-
tinguished by means of a simple wavelength filter. Besides that, there is a possibility to
create a ‘helicity filter’, which would also work in the case of a multi-channel WDM sys-
tem. Indeed, if it is known that two species of solitons in the fibre have the helicitiesS= 0
andS=+1, at the receiver end, the incoming signal can be passed through a phase mask
that adds extra helicity∆S=�2. Then, the arriving FM and HM solitons will change their
helicities to�2 and�1, respectively, so that only the latter will survive, as in the selected
parametric region the modes withS=�2 do not propagate in the fibre. On the other hand,
passing the incoming signal through the phase mask which adds∆S= +1 will transform
the formerS= 0 soliton into a propagatingS=+1 pulse, while the formerS=+1 soliton
will haveS=+2, hence it will not be able to propagate.

Thus, by launching solitons independently in each of the two modes, one can implement
a two-channel system inside the core. Note that the standard elements of fibre communica-
tion systems, such as amplifiers and guiding filters [2], will act in essentially the same way
on the solitons in both modes (although the gain coefficients of an Er-doped fibre amplifier
may differ for the two modes, depending on the density distribution of the doping atoms
in the fibre’s transverse plane). Moreover, if one starts with a WDM multichannel system
already implemented in the fibre, one candoublethe number of the channels by means of
this two-mode scheme. It will be shown below that it is not really possible to triple the
number of the channels, using two HMs with opposite helicities. The feasibility of such a
‘mode-division’ channel doubling may be quite important, as it has been demonstrated that
doubling by means of the polarization-division multiplexing is incompatible with WDM
[15]. Indeed, while the polarization of the soliton can be easily changed by various imper-
fections of the system, the mode’s helicity is expected to be robust, as it is atopological
invariant. Note that we do not consider the polarization structure of the modes, assum-
ing that either they belong to one polarization, or (more realistically for the applications)
the polarization can be effectively averaged out. Thus, our helical mode has nothing in
common with the circular polarization.
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Due to the Kerr nonlinearity, the linearly orthogonal solitons borne by the two modes
interact via the cross-phase modulation (XPM). The main effect considered in this part of
the paper is collisions between the solitons. As is well known, the collisional crosstalk is
the most fundamental problem in soliton-based multichannel communication systems, see,
e.g., refs [16–18].

It should be stressed that, while the application of the proposed mode-division doubling
to WDM soliton communication systems is not straightforward, as there remain some tech-
nical problems, experimental observation of narrowsubpicosecondhelical (spinning) soli-
tons and collisions between themselves and with fundamental solitons in relatively short
optical fibres is a problem of fundamental physical interest in itself. A combination of the
above-mentioned helicity-generating phase masks with the well-developed experimental
technique admitting, e.g., direct observation of the polarization structure of subpicosecond
solitons in short fibres [19] should make the observation of the helical solitons and their
collisions quite feasible.

It is also noteworthy that the helical soliton, whose local intensity vanishes at the central
point of the fibre’s cross section, may be a natural object to exist inhollownonlinear optical
fibres, which have recently attracted a lot of attention (and where, incidentally, very narrow
solitary pulses are quite possible), see, e.g. [20] and references therein.

2.2 The model

A normalized system of coupled nonlinear Schr¨odinger (NLS) equations for the interacting
modes can be derived by means of a standard asymptotic procedure [1],

i(u0)z+ ic0

�
u0

�
τ +k0u0�

1
2

β0(u0)ττ +
�
ju0j

2
+2γ0ju+j

2
+2γ0ju�j

2�u0 = 0; (3)

i(u+)z+ ic1(u+)τ +k1u+�
1
2

β1(u+)ττ +
�
ju+j

2
+2ju

�
j2+2γ1ju0j

2�u+ = 0; (4)

i(u
�
)z+ ic1

�
u
�

�
τ +k1u��

1
2

β1(u�)ττ +
�
ju
�
j2+2ju+j

2
+2γ1ju0j

2�u
�
= 0 (5)

(In the case of extremely narrow solitons, well-known higher-order terms [1,2] should be
added to the system.) We here consider the most general case, when two HMs with the
helicities�1, represented by the envelopesu

�
, interact with the zero-helicity FMu0; β0

andβ1 are the corresponding mode-dependent dispersion coefficients (see below),c 0;1 and
k0;1 are the group-velocity and propagation-constant shifts of the two modes (these char-
acteristics are also mode-dependent [14]), and the effective XPM coefficientγ 0 andγ1 are
given by the properly normalized overlapping integrals between FM and HM. Using known
expressions for the transverse modal functions of the step-index fibre [14], we have calcu-
lated them numerically. In figure 1a, we displayγ0 andγ1 vs. the waveguide parameter
(1).

Note that eqs (3)–(5) do not contain four-wave mixing (FWM) terms. Some of them
might originate from the terms� u2

0

�
u�
�

�2
and its complex conjugate in the model’s Hamil-

tonian density. However, the full expressions to be inserted into the Hamiltonian are mul-
tiplied by the modal angular dependencies exp(�2iθ ), hence they will give zero upon
angular integration. Another possible source of FWM terms in eqs (3)–(5) could be the
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term� u2
0u�+u�

�
and its complex conjugate in the Hamiltonian density. In these expres-

sions, the angular dependence cancels out, hence the angular integration will not nullify
them. However, the corresponding terms in eqs (3)–(5) will be rapidly oscillating inz be-
cause of the difference between the propagation constantsk0 andk1. A straightforward
consideration yields an estimate for the relative wavenumber mismatch between FM and
HM in the region of interest,jk1�k0j=k� 0:4

�
nco�ncl

�
. Taking the same estimate for the

refractive index difference as above,nco�ncl� 0:01, we conclude thatjk1�k0j=k� 0:005,
which corresponds to the beat length� 200 wavelengths. As it is small in comparison with
any propagation distance relevant to solitons, all the FWM terms may be neglected.

As for the dispersion coefficients in eqs (1)–(3), their components accounted for by the
waveguide geometry can also be calculated for the two modes on the basis of the data
available from linear-propagation theory [14]. The result of the calculation is shown in
figure 2b. It is noteworthy that the waveguide-geometry component ofβ 0 changes its sign.
One should, however, keep in mind that the full dispersion also contains a material (bulk)
contribution, which may be essentially larger than that displayed in figure 1b.

Thus, the analysis of the interaction between solitons must admitdifferent (but both
negative, i.e., anomalous [1]) effective dispersionsβ 0 and β1 in eqs (3)–(5). Together
with the nonstandard values of the XPM coefficientsγ0 andγ1, these features constitute an
essential mathematical difference of the present model from a usual three-channel WDM
one (see, e.g., ref. [17]).

The fundamental and helical modes are also characterized by a difference in their group
velocities, which plays a crucially important role in the analysis of soliton-soliton colli-
sions. Continuing the above estimates of the physical parameters for the present case, we
obtain

�
δvgr

�
mode=vgr� 5 �10�6 (6)

Figure 1. The normalized XPM coefficients (a) and the normalized waveguide disper-
sion coefficients (b), vs. the waveguide parameterV for the fundamental (S= 0) and
helical (S= 1) modes in the standard step-index fibre. The full waveguide dispersion is�
nclV∆=λc

�
D, wherec is the velocity of light, and∆� (nco�ncl)=nco. In plot (a), the

dashed line shows the usual value (� 1) of the XPM coefficient.
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Figure 2. Collisions of initially overlapped solitons with amplitudesjujmax= jvjmax= 2
and the relative inverse group velocityc1�c0 = 29 (recall it must be a large parameter)
simulated with eqs (1) and (2), in whichβ0 = β1 = �1: (a) the usual WDM system,
with γ0= γ1� 1; (b) the fundamental and helical solitons, withγ0= 0:98 andγ1 = 0:62.
The simulations were carried out fromz= 0 up to a distance equal to six soliton periods,
which isz= 6.

for the relative group-velocity difference between the modes. As concerns the possibility to
use the mode-division doubling of the channels in the WDM system, it is relevant to men-
tion that, in the WDM system implemented in a standard telecommunications fibre with
dispersionβ ��20 ps2/km at 1:54µm, the relative group-velocity mismatch between the
adjacent channels is estimated to be

�
δvgr

�
WDM =vgr� 10�2 � (δλ=λ ) ; (7)

δλ being the wavelength separation between the channels. The case of practical interest
is ∆λ � 1 nm, hence we conclude that the relative group-velocity differences (6) and (7)
are of the same order of magnitude. On the other hand, in the dispersion-shifted (DS) or
dispersion-compensated (DC) fibres, the effective value of the dispersion is much smaller
than the above-mentioned value�20 ps2/km, hence in these cases the inference is that
the corresponding WDM relative difference is negligible compared to that between the
fundamental and helical modes,
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�
δvgr

�(DS=DC)
WDM =vgr�

�
δvgr

�
mode=vgr: (8)

For typical solitons used in telecommunications, with temporal widthT � 10 ps, the
above estimate

�
δvgr

�
mode=vgr� 5�10�6 implies that a collision between the FM and HM

solitons takes place at a propagation distancezcoll � T
�
δvgr

�
mode=v2

gr � 500 m, which is
much shorter than any soliton’s length scale. This circumstance allows us to treat the XPM-
mediated interaction as a small perturbation in the course of the fast passage of one soliton
through the other, as it was done in other contexts in [17,18]. Note that in the laboratory
experiments with subpicosecond solitons, the collision length may be<

�
50 m, implying

that the experimental study of the collisions should be quite possible.
On the other hand, there is no group-velocity difference between the two HMsu

�
, hence

the collision distance for the corresponding solitons may be very large, giving rise to a
strong crosstalk between them. Moreover, the collision between two solitons with the
helicitiesS= �1 may result in their annihilation or transformation into a pair ofS= 0
solitons, while, due to the conservation of the topological invariant, the collision between
the solitons withS= 0 andS= 1 is expected to be much closer to an elastic one. In view
of this, it makes sense to assume only the doubling of the number of channels by means
of the ‘mode-division multiplexing’ (i.e., to use only one HM) in the context of the WDM
systems, but not tripling, that might seem possible due to the existence of two HMs with
S= �1. Irrespective of that, a study of collisions between the solitons withS= +1 and
S=�1 is a challenge for experiments with narrow solitons in optical fibres.

2.3 Analytical treatment of soliton collisions

Proceeding to the perturbative analysis of the collision between the solitons carried by FM
and HM, we should take into consideration that, in view of the asymmetry between eqs (3)
and (4), (5), the FM and HM solitons may havedifferentwidths,T0 andT1. This circum-
stance makes it technically impossible to base the perturbative treatment of the collision
on the exact unperturbed soliton waveforms of the sech type, as the corresponding overlap
integrals will be intractable. The only possibility to develop an efficient perturbation theory
is to use, as the zero-order approximation, the Gaussianansatzfor the unperturbed soliton
solutions to the uncoupled equations (3) and (4),

u(0)
l

(z;τ) = Al exp

�
iKl z�

(τ� tl )
2

2T2
l

�
;

dtl
dz

= cl ; l = 0;1; (9)

where a relation between the amplitude and width of the soliton can be found by means of
the variational approximation [21],

A2
l =

p
2jβl j=T2

l (10)

(the propagation constantsKl will not be needed here). In fact, the difference between the
approximate soliton’s shape given by eq. (9) and the exact sech shape is fairly small, see,
e.g., figure 5 in [21].

A soliton moving in the given reference frame is obtained from eq. (9) as its Galilean
transform,
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ul(z;τ) = u(0)
l

(z;τ � tl(z)) exp
�
�iωl τ + iqz

�
; (11)

whereωl is an arbitrary transform-generating frequency shift, the propagation-constant
shift q is not essential, and (cf. eq. (9))

dtl
dz

= cl �jβl jωl : (12)

If the XPM term in eqs (1)–(3) is, effectively, a small perturbation (in the case of a fast
collision, see above), the collision between the solitons may be described as that between
two quasiparticles interacting through an effective potential. Following the lines of the
analysis developed for similar problems earlier [17,18], it is straightforward to derive the
following perturbation-induced evolution equations for the solitons’ frequency shifts:

dωl

dz
+

4jβl jγl

T1�l

q
T2

0 +T2
1

�
d
dtl

exp

�
�

(t1� t0)
2

2(T2
0 +T2

1 )

�
= 0; (13)

where eq. (10) was used to eliminate the amplitudes in favour of the widthsTl (recall that
γl are the relative XPM coupling constants in eqs (3)–(5)). Combining eq. (13) with eq.
(12) and assuming, in the first approximation,Tl = constant, furnishes a closed dynamical
system governing the evolution of the temporal positionst l of the two solitons.

To further apply the perturbation theory to eq. (13), we recall that, according to the
estimates obtained above, the difference of the inverse group velocities,c� c1� c0, is,
effectively, a large parameter. Hence, in the lowest-order approximation, one may set
t1� t0 � cz in the argument of the exponential in eq. (13), thus strongly simplifying the
equation:

dωl

dz
=

4(�1)l jβl jγl

cT1�l

q
T2

0 +T2
1

�
d
dz

exp

�
�

(cz)2

2(T2
0 +T2

1 )

�
: (14)

To proceed, it is necessary to specify the type of collision to be considered. One should
distinguish between ‘complete’ and ‘incomplete’ collisions [18]. In the former case, the
solitons are, originally, far separated; in the course of the interaction, the faster soliton
catches up with the slower one and passes it. In the first approximation, the complete
interaction does not give rise to a net frequency shift (a change of the frequency would be
tantamount to a change of the soliton’s velocity, according to eq. (12)), as the integration
of the right-hand side of eq. (14) fromz= �∞ to z= +∞ yields zero. However, finding
a nonzeroinstantaneousfrequency shift from eq. (14), inserting it into eq. (12), and
integrating the latter equation yield a nonzero collision-inducedpositionshift δ t l of the
soliton’s centre, which is the main effect of the complete collision. A final result can be
conveniently written as a relative position shift, normalized to the soliton’s temporal width:

δ tl
Tl

= (�1)l�1 �4
p

2π
β0β1

c2T0T1
γl : (15)

An ‘incomplete’ collision takes place if the solitons are essentially overlapped at the
initial point, z= 0. This kind of collision is more significant, as it gives rise to a nonzero
net frequency shiftδωl (hence, to a velocity shift too). The most important (dangerous)
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case is when the centres of the colliding solitons exactly coincide atz= 0. In this case,δω l
is found by straightforward integration of eq. (14) fromz= 0 to z=+∞. The result can
be presented in a more natural form, multiplying the net frequency shift by the soliton’s
temporal width (i.e., normalizing the frequency shift to the soliton’s spectral width):

Tl δωl = 4(�1)l�1 jβl jTl

cT1�l

q
T2

0 +T2
0

γl : (16)

The only difference of eqs (15) and (16) from similar results for the usual WDM system
are the specific XPM coefficientsγl , which are� 1 in the usual case. The most promising
range for the applications is aroundV = 3:6 (figure 1a), which gives

γ0� 0:98; γ1� 0:62: (17)

This implies that the crosstalk between the FM and HM solitons is attenuated by the factor
0:62 for the HM soliton, as compared to the usual WDM system, while for the FM soliton
the crosstalk strength is not different from that in the usual system (taking, instead, the
values aroundV = 2:4 (figure 1a), we will get smallγ1 � 0:25, but largeγ0 � 1:66).

Thus, if the set of the HM and DM modes is used to double the number of channels in
the WDM system, we conclude that the crosstalk for the HM solitons due to their collisions
with the FM ones in any channel is attenuated, against the usual crosstalk strength, by the
above-mentioned factor� 0:62.

Note that the conclusion concerning the comparison with the WDM crosstalk pertains
to the case when the WDM system is realised in the standard telecommunications fibre: as
it was concluded above, in this case, the group-velocity difference between the fundamen-
tal and helical modes is of the same order of magnitude as the group-velocity mismatch
between adjacent WDM channels, see eqs (6) and (7). Contrary to this, in the dispersion-
shifted or dispersion-compensated fibre link, the group-velocity difference between the
FM and HM channels is much larger than that between the WDM ones, hence the FM-HM
crosstalk is much weaker than between the WDM channels, according to eqs (15) and (16).

2.4 Numerical simulations of the collision

Direct simulations of the soliton collisions within the framework of eqs (3) and (4) for the
two modes demonstrate that, although the above-mentioned frequency-shift-attenuation
factor 0:62 is not really small, sometimes it may be important. In figure 2a, we display an
example of a disastrousincompletecollision in the usual WDM system, which leads to a
merger of the solitons into abreather(the simulations of the complete collision at the same
values of the parameters shows that it is fairly mild, producing only small position shifts
of the solitons). Replacing the usual XPM coefficientsγ � 1 by those for the FM-HM
collision, given by eq. (17), we find that the same solitonssurvivethe incomplete collision
(figure 2b).

3. Vortex-ring solitons in a bulk medium

Since the pioneering experimental results reported in [22] (see also an independent theoret-
ical prediction in [23]),opticalvortices have been of great interest. Formally, conventional
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vortices require an infinite nonzero background, which in practice necessitates a host beam
with a large transverse beam to observe vortices [24].

A different possibility is to consider bright spatial optical solitons, i.e.,ring solitons
in the form of bright self-guided beams with an internal vorticity. As it was mentioned
above, recent theoretical [8] and experimental [9] studies have shown that ring solitons
are strongly unstable against azimuthal perturbations in materials with purely quadratic
or saturable nonlinearities (in which zero-vorticity bright solitons are well known to be
stable).

Materials with a mixed nonlinear response may prove to be more promising. Using a
model describing optical media with a cubic-quintic nonlinear response, rings that were
apparently stable against both small perturbations and collisions between two rings, were
reported in the above-mentioned paper [12]. However, longer simulations demonstrate
that these ring vortices (in both(2+1)- and(3+1)-dimensional cases) are also subject to
instability against azimuthal perturbations [13]. Thus, a challenging fundamental question
is whether truly stable ring solitons can exist in some model with a realistic nonlinearity.
In this part of the paper, we produce a model which indeed supports stable ring solitons
in optical media with bothχ (2) and χ (3) nonlinearities. The stability of rings in these
media will be demonstrated by direct simulations (including collisions), and also by full-
scale linear-stability analysis. The corresponding derivation procedure closely follows that
developed in [25], yielding a normalized system of coupled equations for the fundamental-
and second-harmonic (FH and SH) fieldsu andw,

i
∂u
∂z

+∇2u�βu+u�w+ χ(juj2=4+2jwj2)u= 0;

2i
∂w
∂z

+∇2w�αw+
u2

2
+ χ(4jwj2+2juj2)w= 0;

(18)

where∇2 � ∂ 2=∂x2
+ ∂ 2=∂y2 is the transverse diffraction operator,α � (2∆+4β ), β is

a nonlinear shift of the fundamental-harmonic’s propagation constant,∆ is the normalized
wave-vector mismatch, andχ =�1 is the parameter to distinguish between self-focusing
or self-defocusing Kerr nonlinearity. In this work, we setχ = �1, which corresponds to
the self-defocusing case. Stationary localised solutions with zero and non-zero vorticity
(‘spin’ or topological charge)n have the formu=U(r)exp(inφ) andw=W(r)exp(2inφ),
wherer andφ are the polar coordinates in the transverse plane. Below, we deal with rings
for whichn=�1. Real radial profilesU(r) andW(r) are to be found as localised solutions
of the system

d2U
dr2 +

1
r

dU
dr
�

n2U
r2 �βU +UW� (U2=4+2W2

)U = 0;

d2W
dr2 +

1
r

dW
dr

�
4n2W

r2 �αW+
U2

2
� (4W2

+2U2
)W = 0;

(19)

We solved eqs (19) by means of the standard relaxation technique, finding domains of exis-
tence of different localised solutions with zero and non-zero values of the vorticity. Typical
examples of the localised radial profiles are shown in figure 3. When the soliton parameter
β is small (a low-power regime), ring solitons are rather narrow. The beam’s amplitude at
first increases withβ , but for larger values ofβ it saturates, while the ring width broadens
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because of the self-defocusing influence of theχ (3) term. The ring soliton family bifur-
cates from conventional vortex solitons (with non-zero asymptotics) at someβ cr(∆) which
is the upper boundary of the diagonally hashed region in figures 4 and 8. The change of
the ring shape with changingβ is qualitatively similar to that in the cubic-quintic model,
where the competition of self-focusing and defocusing takes place too [12,13]. Such simi-
larities are not surprising because in thecascading limitof large∆ the SH component can
be eliminated asw� u2=(4∆), and the remaining equation for the FH field reduces to the
cubic-quintic model. Results for the existence and modulational stability of various types
of solitons of eqs (18) are summarized in the form of a diagram in the parametric plane
(∆;β ), (figure 4). Its noteworthy feature is coexistence of vortex, ring-vortex, ring, and
conventional (zero spin) bright solitons. Note that ring-vortex solitons in eqs (18) with
χ =�1 andβ < 0 were first found in a recent work [26] for a rescaled version of eqs (18).
At β < 0, these pairs bifurcate from the single-component (SH-only) finite-background
vortices along theD-curve in figure 4. Our analysis demonstrated that all these ring-vortex
soliton pairs are unstable. Atβ > 0, the ring-vortex pairs are a continuation of rings: these
two types of solutions merge when the SH background vanishes. It follows immediately
from the second equation in the system (19), that this happens at∆ = �2β , on the line
A in figure 4. On the other side of the existence domain, the ring-vortex pairs bifurcate
from modulationally stable two-component finite-background vortices. This bifurcation
curve does not always coincide with the existence boundary of the finite-background vor-
tices (curve C). Atβ < 0, it is given by the line∆ =�0:5. Below, we concentrate on the
central subject of our analysis – fundamental (n=�1) rings and their stability. In fact, the
stability of the rings is a very complex issue. Here, we address the stability problem first
by simulating the propagation of azimuthally perturbed ring solitons and their collisions.
The split-step Fourier (beam propagation) method was used to solve eqs (18). A general
conclusion strongly suggested by results of the simulations is as follows: rings which are
close enough to the upper boundary of the existence domain (i.e., broad flat-top rings)
are stable, whereas more localised ones are unstable against azimuthal instabilities. This

0 100 0 100 0 100 0 200
r r r r

U
,W

0.5

-0.3

0.0

(a) (b) (c) (d)

∆ = −0.1 ∆ = 0.0 ∆ = 0.1 ∆ = 0.3

Figure 3. Examples of an ring-vortex soliton pair (a) and rings (b, c, d) for β = 0:02
and different values of∆. Thick and thin curves stand for the first- and second-harmonic
radial functionsU(r) andV(r).
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-1.0 -0.5 0.0 0.5 1.0
-0.3

-0.2

-0.1

0.0

0.1

β

A

C

∆

D

Figure 4. Regions of existence and modulational stability (for solitons with non-zero
asymptotics) of various types of solitons in the(∆;β ) plane. Conventional vortices exist
everywhere below the thick curve C, which also indicates the boundary of the modula-
tional stability for the vortex background plane waves. The meaning of the lines A and
D is explained in the text. The existence domain for rings and zero spin bright solitons
is diagonally hashed. A domain of the existence of modulationally unstable ring-vortex
solitons is horizontally hashed. Forβ < 0, the existence domain for modulationally
stable ring-vortices is vertically hashed. Atβ > 0, modulationally stable ring-vortices
were found in a small black domain.

conclusion is consistent with recent results obtained for the cubic-quintic model, where it
was clearly shown that making the ring broader strongly, butnot completely, suppressed
its azimuthal instability [13]. Our simulations show that (relatively) narrow unstable rings
with the spinn = �1 break up into two filaments, which is a generic outcome of the
development of the azimuthal instability in the saturable and cubic-quintic models as well
[8,10,13]. Broad ring solitons may survive their collisions (see figure 5). Direct simulations
of the stability may be sufficient to predict experimental observation of stable rings, but it
is not sufficient to resolve the principle issue of the stability: as it was argued in [13], an
instability may be missed if the simulations are not long enough, which was the case in
[12]. Thus, it is necessary to perform a direct linear stability analysis of the rings in the
present model. To this end, consider infinitesimal complex perturbationsε(z; r;θ ) added
to the stationary solutions of eqs (18),

u= [U(r)+ ε1(z; r;θ )]e
inθ ;

w= [W(r)+ ε2(z; r;θ )]e
2inθ (20)

wheren is the value of topological charge as before,U andW being stationary solutions.
The perturbationεm(z; r;θ ) is taken as
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Figure 5. Collisions between unstable (upper) and stable (lower) ring solitons of eqs
(18) at∆ = 0:1. Note that the usually unstable ring splits into two zero-vorticity bright
solitons, and rings which survive the collision are rather broad.

εm = ∑
J

h
ξ+

Jm(r)e
i(λz+Jθ)

+ξ�Jm(r)e
�i(λ �z+Jθ)

i
; (21)

whereJ = 0;�1;�2; ::: is the extra vorticity of the perturbation term. Substituting the
ansatz (20) into eqs (18) and linearizing, we get the following non-self-adjoint eigenvalue
problem,

λ~ξJ =

2
64

A
+

B C D
�B �A

�

�D �C
C=2 D=2 E

+
=2 F=2

�D=2 �C=2 �F=2 �E
�

=2

3
75~ξJ; (22)

whereξ̂J � (ξ+
J1;ξ

�

J1;ξ
+
J2;ξ

�

J2), A
�
= L̂�J1 + χ(U2=2+ 2W2

), B = W + χU2=4, C = U +

2χUW, D = 2χUW, E
�
= L̂�J2+2χ(4W2

+U2
), F = 4χW2, and we define operators

L̂�J1 �
∂ 2

∂ r2 +
1
r

∂
∂ r
�

1
r2 (n�J)2�β ;

(23)

L̂�J2 �
∂ 2

∂ r2 +
1
r

∂
∂ r
�

1
r2 (2n�J)2� (4β +2∆):

Unstable eigenmodes have eigenvalues with non-zero imaginary part. (As the present
model is Hamiltonian eigenvalues appear in complex conjugate quadruplets or pairs.) Real
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eigenvalues which lie in the range(Γ;∞) or (�Γ;�∞), whereΓ�min(β ;4β +2∆), belong
to the continuous spectrum.

To analyse the eigenvalue problem (22), the differential operators were replaced by their
fifth-order finite-difference approximations and the resulting algebraic eigenvalue problem
was solved numerically. Most often, 200�400 grid points were used in the analysis, but up
to 1200 points were used in parameter regions where a change of the stability occurs. To
verify the precision of our numerical method, a technique based on the relaxation method
for solving two-point boundary value problems was used too. Although limited to finding
only internal modes (eigenmodes withλ purely real), the relaxation method admits a high
degree of control over precision without much of the computational overhead of other nu-
merical methods. Note that this method has been recently used to a great effect in finding
a small stability window for higher-order spatial solitons in the parametric-third-harmonic
generation model, which would have otherwise been thought to be unstable [27]. The com-
parison between the spectral and relaxation methods has shown that the former one has a
good precision for the number of grid points used. Results of the linear stability analysis
are displayed in figures 6 and 8. The findings are in agreement with results of direct sim-
ulations of the propagation presented above: thin rings are unstable and broad rings are
stable. Azimuthal perturbations withJ = 0; :::;�5 were analysed, and it has been found
that dominant instability terms haveJ =�2, eventually leading to the ring’s breakup into
two filaments. The eigenvalues associated with theJ = �2;�3 instability are complex.
However, in all the cases analysed astability windowwas found whenβ was approaching
the upper existence boundary of ring solitons. For fundamental rings with the vorticity
n=�1, the stability window occupies up to� 8% of the total existence domain[0;β cr(∆)]
of the ring solitons. In addition to fundamental rings, those with vorticityn = �2,
were also found to be stable albeit for a much smaller range of propagation constantβ

0.030 0.035 0.040 0.045 0.050

0.015

0.010

0.005

0.000

Im
(λ

)

β

J = 2

J = 3

Figure 6. Unstable eigenvalues for∆ = 0. Perturbation terms in eq. (4) withJ = �2
account for a dominant instability, which is however no longer present forβ � 0:0475;
the rings (n= �1) exist up toβ � 0:0518. Perturbations withJ = (�1;�4;�5) have
Im λ = 0 within the numerical accuracy of our method, therefore they are not presented
in this figure. Note, that bothJ = �2 andJ = �3 related instabilities have complex
eigenvalues (only Imλ parts are shown).
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(� 5% of existence domain, see figure 7). Ring solitons with parameters belonging to
the stability window propagate in the direct simulations without any visible perturbation
growth indefinitely, surviving both azimuthal perturbations and collisions with other soli-
tons. These are the first examples, in the authors’ knowledge, of stable spinning solitons.

In several 1D models, solitons with non-fundamental profiles (multi-humped) have been
found to be stable, or at least weakly unstable [28]. Recently, such solitons have been ob-
served in experiments [29]. In some sense, ring solitons are analogous to double-humped
solitons, while stable zero-spin one-hump bright solitons analysed in [30] represent a

0.0005

0.00025

0.049 0.0491 0.0492 0.0493

β

Im
(λ

)

J = 2

Figure 7. Same as figure 6 except only the eigenvalues associated withn = �2 rings
and perturbationJ = �2 (which is maximal). Stable rings withn = �2 exist forβ �
0:04918.

∆

β

Figure 8. Region of existence and stability of fundamental (n= �1) rings of eqs (18).
Region of stable rings is diagonally hashed while region of unstable rings is horizontally
hashed.

1076 Pramana – J. Phys.,Vol. 57, Nos 5 & 6, Nov. & Dec. 2001



Stable helical solitons in optical media

fundamental soliton family of our model. Thus, the coexistence of stable solitons with the
zero and nonzero topological charges resembles the above-mentioned cases of the coex-
istence between stable single- and double-humped solitons, reported in some of the pa-
pers [28]. However, a principal difference is that the zero- and nonzero-spin stable bright
(2+1)D solitons coexist while belonging todifferent topological classes. Finally, it is nec-
essary to address a possibility of experimental realization of optical media for observation
of stable rings. Although no conventional nonlinear material with strongχ (2) nonlinearity
directly satisfies our requirement to have a negative Kerr coefficient both for the FH and
the SH frequencies, there are, at least, two schemes to effectively achieve this condition:
(i) by building a layered medium in which some layers provide for theχ (2) nonlinearity,
and others for the self-defocusing Kerr nonlinearity, or (ii) by engineering special non-
linear χ (2) gratings [31]. In the latter case, an average induced cubic nonlinearity can be
provided for by a modulated quasi-phase-matching grating, that will be equal in strength
to the intrinsic quadratic nonlinearity. Thus, media with the competing nonlinearities that
may support stable vortex rings are within the reach of the modern-day experiment.
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