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Abstract. In this paper, we consider nonlinear Schr¨odinger (NLS) equations, both in the anomalous
and normal dispersive regimes, which govern the propagation of a single field in a fiber medium with
phase modulation and fibre gain (or loss). The integrability conditions are arrived from linear eigen
value problem. The variable transformations which connect the integrable form of modified NLS
equations are presented. We succeed in Hirota bilinearzing the equations and on solving, exact
bright and dark soliton solutions are obtained. From the results, we show that the soliton is alive, i.e.
pulse area can be conserved by the inclusion of gain (or loss) and phase modulation effects.
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1. Introduction

The term soliton refers to special kinds of waves that can propagate undistorted over long
distances and remain unaffected after collision with each other. Solitons are very useful
for improving the performance of high-speed dispersion-limited fibre optics communica-
tion systems since they can maintain their width over long distances by balancing the ef-
fect of group velocity dispersion (GVD) through the nonlinear phenomenon of self-phase
modulation (SPM). Bright (dark) solitons are manifestations of the fibre nonlinearity in
the anomalous (normal) dispersion regime, where the fibre can support them through a
balance between the dispersive and nonlinear effects. The simplest possible model of non-
linear pulse propagation is the nonlinear Schr¨odinger (NLS) equation [1].

There are many nonlinear Schr¨odinger-type equations which have been studied from
the soliton point of view and are shown to be completely integrable by various analytical
methods [2,3]. However, there are a number of other factors which can affect the dynamics
of optical solitons and the conditions for the generation of optical solitons in real fibres. For
instance, the dissipative loss leading to damping of soliton amplitude without changing its
velocity [4,5], higher-order dispersion effects [4,6], various inhomogeneities of fibre [7],
alternating conditions of exploitation of optical lines [8,9], etc. are important factors which
can affect wave propagation through fibres.

Optical pulse compression finds important applications in optical fibres. The pulse com-
pressors based on the nonlinear effects in optical fibres can be classified into two broad
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categories, referred to as fibre-grating or prism compressors and soliton-effect compres-
sors [1]. In a fibre-grating compressor, the pulse is propagated in the normal dispersion
regime of the fibre and then compressed externally using a grating pair. The role of fibre
is to impose a linear, positive chirp on the pulse through a combined effect of SPM and
GVD. The grating pair provides anomalous GVD required for compression of positively
chirped pulses. The soliton-effect compressor consists of only a piece of fibre whose length
is suitably chosen. The input pulse propagates in the anomalous dispersion regime of the
fibre and is compressed through an interplay between SPM and GVD. The compression
is due to an initial narrowing phase through which all higher-order solitons go before the
initial shape is restored after one soliton period. The compression factor depends on the
peak power of the pulse that determines the soliton order N. The two types of compres-
sors are complimentary, and generally operate at different regions of the pulse spectrum.
Thus, the fibre-grating compressor is useful to compress pulses in the visible and near-
infrared regimes while the soliton-effect compressor is useful in the range 1.3–1.6µm.
These methods are convenient with sources that inherently produce chirped pulses [10].
Unchirped pulses can be chirped for compression in numerous ways. Nonlinear chirp-
ing can be achieved by the use of self-phase modulation in optical fibres, possibly with
positive dispersion for linear chirping [11]. Unchirped pulses can also be chirped during
amplification, or by phase modulation [12].

An alternative approach to chirping is to combine SPM and dispersion in a distributed
manner: mainly, to utilize soliton effects. Early work focused on using the compression
of higher-order solitons [13]. This can provide rapid conversion but suffers from residual
pedestals. Nonlinear intensity discrimination technique can help to reduce the pedestals
[14,15], but energy is wasted. A less rapid technique that provides better pulse quality is
adiabatic amplification of fundamental solitons. Solitons have fixed area, so the increased
energy from amplification is accommodated by an increase in power and a decrease in
width. To avoid distortion, the amplification per soliton period should not be too great.
Recently, it has become practical to draw optical fibres with dispersion that decreases along
the length of the fibre. This method can be used to achieve the same effect as adiabatic
amplification, but the effect can be achieved in a passive fiber [16,17].

Moores in his numerical work, has introduced a novel pulse compression technique [18]
which is similar to adiabatic soliton amplification. The technique implements the area
conservation property of the soliton and this involves gain and phase modulation whose
coefficients are functions of normalized distance. Here Moores has considered various gain
profiles, and has explictly shown that chirped solitary waves can be nonlinearly compressed
throughout cleanly and efficiently with appropriate tailored gain or dispersion profile. In
this way, the pulses exhibit no radiative loss, conserve their area and maintain a constant
chirp relative to the pulse width.

In nonlinear fibre optics, nonlinear compression of chirped solitary waves is found to
have wide applications in optical telecommunication and switching purposes. In this paper,
we are analytically discussing the pulses which are chirped throughout the fibre, and the
chirp and amplification are proportional. Nonlinear compression of pulse in a fibre can be
described by a modified NLS equation of the form

iqz+qtt +2jqj2q= F(z)q; (1)

whereF(z) is related to gain forβ (z)> 0, and loss forβ (z)< 0, andα(z) is the coefficient
of phase modulation, which is, in general, a function ofz [19] and is given by
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F(z) = α(z)t2
+ iβ (z): (2)

Then eq. (1) becomes

iqz+qtt +2jqj2q= α(z)t2q+ iβ (z)q: (3)

We identify the integrability condition of the above equation through linear eigenvalue
problem and construct soliton solutions. The above equation is numerically studied by
Moores [18]. An intersting feature to be noted in the present study is the conservation of
pulse area which implies the conservation of energy [18].

2. Linear eigenvalue problem

The Lax pair assures the complete integrability of a nonlinear system, and is especially
used to obtain integrability condition and N-soliton solutions by means of inverse scattering
transform method. In this article, we follow the AKNS formalism to obtain the Lax pair.
In order to construct the Lax pair for eq. (3), it is convenient to introduce a variable
transformation

q(z; t) = Q(z; t)exp

�
�iβ t2

2

�
: (4)

Using the above transformation in eq. (3), the following equation is obtained

iQz+
βzt2Q

2
+Qtt +2jQj2 Q�2iβ tQt �2iβQ�

�
β 2

+α
�
t2Q= 0: (5)

The linear eigenvalue problem associated with eq. (5) is [20,21]

ψt =Uψ ; (6)

ψz =Vψ ; (7)

ψ = (ψ1ψ2)
T
; (8)

where we choose

U =

�
�iλ1 Q
�Q� iλ1

�
; (9)

V = 2iλ 2
1

�
�1 0
0 1

�
+2λ1

�
�iβ t Q
�Q� iβ t

�
+ i

�
jQj2 Qt �2iβ tQ

Q�

t +2iβ tQ� �jQj2

�
;

(10)

whereλ1 is the non-isospectral parameter given by
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λ1 = λ1 (0)exp(2
Z

βdz): (11)

Now the relationUz�Vt +[U;V] = 0; gives rise to the following equation

iQz+Qtt +2jQj2Q�2iβ tQt �2iβQ= 0: (12)

On comparing eqs (12) and (5), it is clear that eq. (5) admits complete integrability when
the condition

βz = 2
�
β 2

+α
�

(13)

is satisfied. Thus the integrability condition of eq. (3) is derived by using Lax pair. Inte-
grability condition for constantβ has been discussed earlier [22,23].

3. Hirota bilinearization and soliton solution

Hirota’s bilinear method [24] is one of the most direct and elegant methods available to
generate multi-soliton solutions of nonlinear partial differential equations. To construct
Hirota’s bilinear form, we consider Hirota bilinear transformation in the form

Q=
G
F
; (14)

whereG(z; t) is a complex function andF (z; t) is a real function. Now using the transfor-
mation (14) in (12) and after decoupling, we get�

iDz+D2
t �2iβ tDt �2iβ

�
(G:F) = 0

D2
t (F:F) = 2jGj2 ;

(15)

where the Hirota bilinear operatorsDz andDt are defined as

Dm
z Dn

t G(z; t)F
�
z0; t 0

�
=

�
∂
∂z

�
∂

∂z0

�m� ∂
∂ t

�
∂

∂ t 0

�n

�G(z; t)F
�
z0; t 0

�
jz=z0

;t=t0 : (16)

In order to obtain soliton solutions, we are applying a perturbative technique by writing the
variablesF; G as a series in an arbitrary parameterε

F = 1+ ε2 f2+ ε4 f4+ � � � ; G= εg1+ ε3g3+ ε5g5+ � � � : (17)

For one-soliton solution (1SS), we assume

F = 1+ ε2 f2; G= εg1: (18)

Substituting eq. (18) in eq. (15) and then collecting coefficents ofε andε 2, we get

ε �
iDz+D2

t �2iβ tDt �2iβ
��

g1:1
�
= 0; (19)
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ε2

D2
t

�
1: f2+ f2:1

�
= 2

��g1

��2 ; (20)

ε3

�
iDz+D2

t �2iβ tDt �2iβ
��

g1: f2
�
= 0; (21)

ε4

D2
t

�
f2: f2

�
= 0: (22)

For solving (19)–(22), we assume

g1 = exp(η);

f2 = exp(η +η�

);

(23)

where

η =�2iα1t �4i
Z �

α2
1 �α2

2

�
dz+2α2t +8

Z
α1α2dz+η0 (24)

with α1(z) = α1(0) exp(2
R

βdz) andα2(z) = α2(0) exp(2
R

βdz). Using eqs (23), (24),
(18) and (14), after absorbingε ; the 1SS of eq. (12) can easily be worked out to be as

Q= 2α2exp

�
�2iα1t�4i

Z �
α2

1 �α2
2

�
dz

�
sech

�
2α2t +8

Z
α1α2dz

�
: (25)

Using the transformation (4), we can construct 1SS for eq. (3) as

q= 2α2exp

�
�2iα1t�4i

Z �
α2

1 �α2
2

�
dz�

iβ t2

2

�

�sech

�
2α2t +8

Z
α1α2dz+η0

�
: (26)

Thus we have obtained exact bright soliton solution using Hirota technique. The appear-
ance of the termα2 in the amplitude shows that the soliton amplitude grows at the same
rate as the respective power amplitudes, i.e:dW

dz = 2W with W =
R
jqj2dτ : As a result of

chirping, the pulse broadens as it propagates along the fibre. At each stage of propagation,
the product of pulse width and pulse amplitude is found to be conserved due to which
the area occupied by the pulse envelope remains preserved with the inclusion of gain and
phase modulation. This is clearly depicted in figures 1a and b. The contour plot in figure 1c
further strengthens our result. The above results are in agreement with the results obtained
numerically by Moores [18].

For NLS equation with phase modulation and damping, eq. (3) becomes

iqz+qtt +2jqj2q= α(z)t2q� iβ (z)q: (27)
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Figure 1. (a) Amplitude profile ofjq(z;t)j for the one-soliton solution of eq.(26) with
the parameter valuesα1 (0) = 1; α2(0) = 0:5 andβ (z) = 1

3z: (b) Variation ofjQ(t)j for
the one-soliton solution of eq. (40) with the parameter valuesα1 (0) = 1; α2 (0) = 0:5
andβ (z) = 1

3z. This figure shows the variation ofjq(t)j with t for different values of
z (z= 0:6;0:8;1;1:2;1:4). Figure shows that the amplitude increases asz increases.
(c) Contour plot ofjq(z;t)j with respect toz andt for the parameter valuesα1 (0) = 1;

α2 (0) = 0:5 andβ (z) = 1
3z:
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The linear eigenvalue problem associated with eq. (27) is

U =

�
�iλ2 Q
�Q� iλ2

�
; (28)

V = 2iλ 2
2

�
�1 0
0 1

�
+2λ2

�
iβ t Q
�Q� �iβ t

�
+ i

�
jQj2 Qt +2iβ tQ

Q�

t �2iβ tQ� �jQj2

�
;

(29)

where

λ2 = λ2(0)exp

�
�2

Z
βdz

�
(30)

and

Q(z; t) = q(z; t)exp

�
iβ t2

2

�
:

Here the integrability condition is

βz =�2
�
β 2

+α
�

(31)

and proceeding as before, we get the solution of the eq. (27) as

q= 2α4exp

�
�2iα3t�4i

Z �
α2

3 �α2
4

�
dz+

iβ t2

2

�

�sech

�
2α4t +8

Z
α3α4dz+η0

�
(32)

with α3(z) = α3(0) exp(�2
R

βdz) andα4(z) = α4(0) exp(�2
R

βdz).
Here the appearance of the termα3 in the amplitude shows that the soliton amplitude

decays at the same rate as the respective power amplitudes. i.e;dW
dz = �2W with W =R

jqj2dτ . In this case also, the product of pulse width and pulse amplitude is found to be
conserved due to which the area occupied by the pulse envelope remains preserved when
loss and phase modulation are included. This is clearly depicted in figures 2a and b. The
contour plot in figure 2c further strengthens our result.

4. Dark solitons

Optical dark solitons have been investigated in many theoretical and experimental papers.
Recently there is an increased interest in dark spatial solitons because of their possible
applications in optical logic devices [25] and waveguide optics as dynamic switches and
junctions [26]. They are also considered for signal processing and communication appli-
cations because of their inherent stability [27]. In fact, the influence of noise and fibre loss
on dark soliton is much lesser than that on bright solitons [28].
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Figure 2. (a) Amplitude profile of jq(z;t)j for the dark one-soliton solution of eq.
(32) with the parameter valuesα3 (0) = 1; α4 (0) = 0:5 andβ (z) = 1

3z: (b) Variation
of jq(t)j for the one-soliton solution of eq. (32) with the parameter valuesα3 (0) = 1;

α4 (0) = 0:5 andβ (z) = 1
3z: This figure shows the variation ofjq(t)j with t for different

values ofz (z= 0:04;0:056;0:0753;0:09). Here amplitude decreases asz increases.
(c) Contour plot ofjq(z;t)j with respect toz andt for the parameter valuesα3 (0) = 1;

α4 (0) = 0:5 andβ (z) = 1
3z:
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Pulse compression can also be achieved in the normal dispersive regime by reversing
the GVD with the inclusion of amplification and phase modulation. Now proceeding to the
case of the normal GVD regime, eq. (3) can be written as

iqz�qtt +2jqj2q= α(z)t2q+ iβ (z)q: (33)

Before proceeding to arrive the integrability conditions from AKNS formalism, we intro-
duce a variable transformation

q(z; t) = Q(z; t)exp

�
iβ t2

2

�
(34)

in eq. (33), resulting in

iQz�
βzt2Q

2
�Qtt +2jQj2 Q�2iβ tQt �2iβQ�

�
α �β 2� t2Q= 0: (35)

The linear eigenvalue problem associated with eq. (35) is

U =

 
� iλ

2 �iQ

iQ� iλ
2

!
; (36)

V = λ 2
1

�
i
2 0
0 � i

2

�
+λ1

�
�iβ t iQ
�iQ� iβ t

�
+

�
i jQj2 �Qt �2iβ tQ

�Q�

t +2iβ tQ� �i jQj2

�
;

(37)

where

λ1 = λ1 (0)exp

�
2
Z

βdz

�
: (38)

Now the relationUz�Vt +[U;V] = 0; leads to the equation

iQz�Qtt +2jQj2Q�2iβ tQt �2iβQ= 0: (39)

On comparing eqs (39) and (35), it is clear that eq. (33) admits complete integrability when
the condition

βz =�2
�
α �β 2� (40)

is satisfied. Thus the integrability condition of eq. (33) is derived by using Lax pair. On
decoupling eq. (39), we get�

iDz�D2
t �2iβ tDt �2iβ + χ

�
(G:F) = 0

(D2
t �µ)(F:F) =�2jGj2

(41)

in which χ is a function to be determined.
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Next, in order to construct dark one-soliton solution of the eq. (39), we assume

G= g0

�
1+ εg1

�
; F = 1+ ε f1: (42)

Substituting eq. (42) in eq. (41) and collecting the coefficients ofε 0; we get�
iDz�D2

t �2iβ tDt �2iβ + χ
��

g0:1
�
= 0

χ = 2
��g0

��2 : (43)

To solve eq. (43), we assume

g0 = 2α2 (0)exp

�Z
(2β + iχ)dz

�
; (44)

whereα2 (0) is a constant. Then

χ = 2
��g0

��2 = 8α2
2 = 8[α2 (0)]

2exp

�
4
Z

βdz

�
: (45)

Using eqs (41) and (42) and the usual Hirota identities [24], and then collecting the coeffi-
cents ofε andε2, we obtain

ε �
iDz+D2

t �2iβ tDt

��
1: f1+g1:1

�
= 0

(D2
t �µ)

�
1: f1+ f1:1

�
=�4g1

��g0

��2 ; (46)

ε2 �
iDz+D2

t �2iβ tDt

��
g1: f1

�
= 0

(D2
t �µ)

�
1: f1+ f1:1

�
=�2g1

��g0

��2 : (47)

For solving eqs (46) and (47), we assume

g1 =�exp
�
4α2t +2η0

�
; f1 =�g1; (48)

whereη0 is a constant. Using eqs (48), (44), (42) and (14), after absorbingε ; dark one-
soliton solution can be obtained as

Q= 2α2exp

�
i

�Z
8α2

2dz�π
��

tanh
�
2α2t +η0

�
: (49)

Using eq. (34), we can construct 1SS of eq. (33) as

q= 2α2exp

�
i

�Z
8α2

2dz+
β t2

2
�π
��

tanh
�
2α2t +η0

�
: (50)

Thus, we obtain exact dark 1SS by following the Hirota technique. Here also we can ob-
serve that the product of the pulse width and pulse amplitude is found to be conserved
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due to which the area occupied by the pulse envelope remains preserved when gain and
phase modulation are introduced. This is clearly depicted in figures 3a–c.

Figure 3. (a) Amplitude profile ofjq(z;t)j for the one-soliton solution of eq. (50) with
the parameter valuesα2 (0) = 1 andβ (z) = 1

3z. (b) Variation of jq(t)j for the one-

soliton solution of eq. (50) with the parameter valuesα2 (0) = 1 andβ (z) = 1
3z: This

figure shows the variation ofjq(t)j with t for different values ofz (z= 0:4;0:6;0:8;1).
Figure shows that the amplitude increases asz increases. (c) Contour plot ofjq(z;t)j
with respect toz andt for the parameter valuesα2(0) = 1 andβ (z) = 1

3z:
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Figure 4. (a) Amplitude profile ofjq(z;t)j for the dark one-soliton solution of eq. (56)
with the parameter valuesα3(0) = 1 andβ (z) = 1

3z: (b) Variation ofjq(t)j for the one-

soliton solution of eq. (56) with the parameter valuesα3(0) = 1 andβ (z) = 1
3z: This

figure shows the variation ofjq(t)j with t for different values ofz (z= 0:4;0:6;0:8;1).
Figure shows that amplitude decreases asz increases. (c) Contour plot ofjq(z;t)j with
respect toz andt for the parameter valuesα3 (0) = 1 andβ (z) = 1

3z:
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For phase modulation and damping, eq. (33) becomes

iqz�qtt +2jqj2q= α(z)t2q� iβ (z)q: (51)

The linear eigen value problem associated with eq. (51) is

U =

 
�iλ4

2 �iQ

iQ�

iλ4
2

!
; (52)

V = λ 2
4

�
i
2 0
0 �i

2

�
+λ

�
iβ t iQ
�iQ� �iβ t

�

+

�
i jQj2 �Qt +2iβ tQ

�Q�

t �2iβ tQ� �i jQj2

�
; (53)

where

λ2 = λ2(0)exp

�
�2

Z
βdz

�
(54)

and

Q(z; t) = q(z; t)exp

�
�iβ t2

2

�
:

Here the integrability condition is

βz = 2
�
α �β 2� (55)

and solution of the eq. (51) is

q= 2α3exp

�
i

�Z
8α2

3dz+
β t2

2
�π
��

tanh
�
2α3t +η0

�
(56)

with α3(z) = α3(0) exp(�2
R

βdz). Thus exact dark 1SS for NLS with damping and phase
modulation is obtained. From the figures 4a–c we can observe that the product of the pulse
width and pulse amplitude is found to be conserved due to which the area occupied by
the pulse envelope remains preserved with the inclusion of damping and phase modulation
and the contour plot strengthens our result. To our knowledge, explicit construction of
bright and dark soliton solution of modified NLS equations with variable coefficients using
Hirota’s method have not been reported earlier.

5. Conclusion

Modified NLS equations in anomalous and normal dispersive regimes with phase modula-
tion and gain (or loss) are considered. We have arrived at a general integrability condition
from AKNS method for both cases. Finally we have constructed bright and dark soliton
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solutions. Solutions of eqs (3), (27), (33) and (51) explain how we can achieve pulse com-
pression keeping soliton property when it is transmitted through the fibre with the addition
of fibre gain (or loss) and phase modulation. The amplitude of the pulse is found to de-
crease in an exponential way for damping and increase in an exponential way for gain with
the pulse width broadening at each stage of propagation such that area of the pulse enve-
lope remains preserved. From the figures, it is very interesting to note that the soliton area
is conserved and hence the soliton nature of the pulse is maintained and the pulse can be
said to experience a new type of compression. If we are able to achieve this experimentally,
then this method offers a new way of generating compressed pulses.
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