Gauge transformation between retarded and multipolar gauges

A M STEWART
Department of Applied Mathematics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia
Email: andrew.stewart@anu.edu.au

MS received 24 July 2000; revised 9 January 2001

Abstract. The gauge function, expressed in terms of the sources, required for a gauge transformation between the retarded electromagnetic gauge and the three-vector version of the multipolar gauge is obtained.

Keywords. Gauge; transformation; retarded; multipolar.

PACS Nos 03.50.De; 11.15.q

The retarded solutions to the inhomogeneous wave equations for the electromagnetic scalar and vector potentials \(\phi(r, t) \) and \(A(r, t) \)

\[\frac{\partial^2 A}{\partial (ct)^2} - \nabla^2 A + \nabla(\nabla \cdot A - c^{-2} \partial \phi / \partial t) = \mu_0 J \]

and

\[\nabla^2 \phi + (\partial / \partial t) \nabla \cdot A = -\rho / \varepsilon_0 \]

are

\[\phi_1(r, t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(r', t') \delta(t' - t + |r - r'| / c)}{|r - r'|} dr'dt' \]

and

\[A_1(r, t) = \frac{\mu_0}{4\pi} \int \frac{J(r', t') \delta(t' - t + |r - r'| / c)}{|r - r'|} dr'dt' \]

where \(\delta \) is the Dirac delta function and \(c \) is the velocity of light. They describe the potentials at position \(r \) and time \(t \) arising from charge and current densities \(\rho \) and \(J \) at position \(r' \) and time \(t' \) [1, 2] and satisfy the Lorentz gauge condition \(\nabla \cdot A_1 + c^{-2} \partial \phi_1 / \partial t = 0 \). The electromagnetic fields \(E(r, t) \) and \(B(r, t) \) are obtained from the potentials by the relations

\[B = \nabla \times A \quad \text{and} \quad E = -\nabla \phi - \partial A / \partial t, \]

685
where ∇ is the spatial gradient operator with respect to r. In consequence, if the potentials are transformed to

$$\mathbf{A} \rightarrow \mathbf{A'} = \mathbf{A} + \nabla \chi \quad \text{and} \quad \phi \rightarrow \phi' = \phi - \partial \chi / \partial t,$$

the electromagnetic fields are unchanged. The gauge function $\chi(r, t)$ is required to satisfy the condition \{($\partial / \partial i)(\partial / \partial j) - (\partial / \partial j)(\partial / \partial i)$\}$\chi = 0$, where i and j are any pair of the coordinates x, y, z and t. The principle of gauge invariance requires all observable quantities, such as the fields \mathbf{E} and \mathbf{B}, to be independent of the gauge function [3,4].

In the retarded gauge above, the potentials, denoted by the subscripts 1 are described in terms of the charge and current source densities ρ and \mathbf{J} at the retarded time $t' = t - \|r - r'/c$. Another gauge that is of interest in the theory of magnetism [5,6] and in semiclassical electrodynamics which describes the interaction of atoms with radiation [6] is the three-vector version of the multipolar gauge [5,7–9]. In this gauge the potentials, denoted by the subscript 2, are described in terms of the instantaneous but non-local values of the fields \mathbf{E} and \mathbf{B}

$$\phi_2(r, t) = -\mathbf{r} \cdot \int_0^1 \mathbf{E}(\mathbf{r}, \mathbf{r}, t) \, du \quad \text{and} \quad A_2(r, t) = -\mathbf{r} \times \int_0^1 \mathbf{B}(\mathbf{r}, \mathbf{r}, t) \, du.$$

The multipolar gauge satisfies the condition $\mathbf{r} \cdot A_2(r, t) = 0$ and is obtained from a gauge function that is essentially given by $-\int_0^1 \mathbf{r} \cdot A_2(\mathbf{r}, \mathbf{r}, t) \, du$ [9].

It is the purpose of this note to obtain the gauge function $\chi(r, t)$ that effects a gauge transformation between these two important gauges by means of the relations $A_2 = A_1 + \nabla \chi$ and $\phi_2 = \phi_1 - \partial \chi / \partial t$. The procedure that is used is to get $\mathbf{B}_1(r, t)$ and $\mathbf{E}_1(r, t)$ from eqs (3)-(5) and substitute them in eq. (7) to get $A_2(r, t)$ and $\phi_2(r, t)$. A gauge function $\chi(r, t)$ is then found that relates the two sets of potentials.

First we get \mathbf{B}_1 by taking the curl of \mathbf{A}_1 with respect to \mathbf{r}. Noting that \mathbf{J} is a function of \mathbf{r}' but not of \mathbf{r} this gives

$$B_{1z}(\mathbf{r}, t) = -\frac{\mu_0}{4\pi} \int \, d\mathbf{r}'d\mathbf{t}' \mathbf{J}(\mathbf{r}', t') \times \nabla_{\mathbf{r}'} h(\mathbf{r}),$$

where $h(\mathbf{r}) = \delta(\mathbf{t}' - t + |\mathbf{r} - \mathbf{r}'|/c)/|\mathbf{r} - \mathbf{r}'|$ and the gradient is taken with respect to the parameter \mathbf{r}. Hence

$$A_2(r, t) = \frac{\mu_0}{4\pi} \int \, d\mathbf{r}'d\mathbf{t}' \int_0^1 \, du \, \mathbf{r} \times \{\mathbf{J}(\mathbf{r}', t') \times \nabla_{\mathbf{r}'} h(\mathbf{r})\}.$$

The triple vector product may be expanded as

$$\mathbf{r} \times \{\mathbf{J}(\mathbf{r}', t') \times \nabla_{\mathbf{r}'} h(\mathbf{u})\} = \mathbf{J}(\mathbf{r}', t')\{\mathbf{r} \cdot \nabla_{\mathbf{r}'} h(\mathbf{r})\} - \{\mathbf{J}(\mathbf{r}', t') \cdot \mathbf{r}\} \nabla_{\mathbf{r}'} h(\mathbf{u})$$

and this gives rise to two terms in (9). When the relations between derivatives $u \nabla_{\mathbf{r}'} h(\mathbf{u}) = \nabla h(\mathbf{u})$ and $(\mathbf{r} \cdot \nabla) h(\mathbf{u}) = u(\partial h(\mathbf{u}) / \partial u)$ derived in the appendix are used, where h is any function of \mathbf{u}, the first term in the integrand becomes $u(\partial h(\mathbf{u}) / \partial u) = (\partial / \partial u)(uh) - \frac{h}{u}$ and so (9) is

$$\text{and so (9) is}$$

Retarded and multipolar gauges

\[A_2(r, t) = \frac{\mu_0}{4\pi} \int \, dr' dt' J(r', t') \times \int_0^1 \, du \left[\partial / \partial u \{ uh(\text{ur}) \} - h(\text{ur}) \right] \cdot r \nabla_r h(\text{ur}), \]

where in the last term the vector dot product is between \(J \) and \(r \). The integral of \(u \) over the perfect differential can be carried out to give

\[A_2(r, t) = \frac{\mu_0}{4\pi} \int \, dr' dt' J(r', t') \left[h(r) - \int_0^1 \, du \{ h(\text{ur}) + r \nabla_r h(\text{ur}) \} \right]. \]

The first term can be recognized to be \(A_1(r, t) \) of eq. (4) so,

\[A_2(r, t) - A_1(r, t) = -\frac{\mu_0}{4\pi} \int \, dr' dt' J(r', t') \int_0^1 \, du \{ h(\text{ur}) + r \nabla_r h(\text{ur}) \}. \]

Next we calculate \(\phi_2(r, t) \). From eq. (5), \(E \) is the sum of two parts, denoted by the superscripts \(a \) and \(b \), which, from eq. (7), give rise to two terms in the potential. The first, involving the gradient, is

\[\phi_2^a(r, t) = \int_0^1 \, du (r \cdot \nabla_{ur}) \phi_1(\text{ur}, t), \]

so using the results in the appendix, \(r \cdot \nabla_{ur} h(q) = \partial h/\partial u \) we obtain \(\phi_2^a(r, t) - \phi_1(r, t) = -\phi_1(0, t) \). The other term is \(\phi_2^b(r, t) = r \cdot \int_0^1 (\partial / \partial t) A_1(\text{ur}, t) \, du \) and leads to

\[\phi_2(r, t) - \phi_1(r, t) = -\phi_1(0, t) - \frac{\mu_0}{4\pi} \int \, dr' dt' \{ r \cdot J(r', t') \} \times \int_0^1 \, du \frac{\partial}{\partial u} \{ t' - t + |\text{ur} - r'|/c \} / |\text{ur} - r'|, \]

where \(\partial' \) is the derivative of the delta function with respect to its argument.

Consider now the scalar function \(\chi(r, t) = f(r, t) + g(t) \) where

\[f(r, t) = -\frac{\mu_0}{4\pi} \int \, dr' dt' \{ r \cdot J(r', t') \} \int_0^1 \, du h(\text{ur}) \]

and

\[g(t) = -\frac{1}{4\pi \varepsilon_0} \int \, dr' dt' \rho(r', t') \theta \{ t' - t + |r'|/c \} / |r'| \]

and \(\theta(x) \) is the function which is 1 for \(x > 0 \) and zero otherwise; its derivative is the delta function. The gradient of \(\chi \), which is the gradient of \(f \), is obtained by noting that

\[\nabla \{ r \cdot J(r', t') h(\text{ur}) \} = h(\text{ur}) \nabla \{ r \cdot J(r', t') \} + \{ r \cdot J(r', t') \} \nabla h(\text{ur}) = h(\text{ur}) J(r', t') + \{ r \cdot J(r', t') \} \nabla h(\text{ur}) \] since \(\nabla \{ J(r', t') \cdot r \} = J(r', t') \). Hence
The time derivative $\partial \chi / \partial t$ has two terms coming from f and one from g.

$$\frac{\partial f}{\partial t} = \frac{\mu_0}{4\pi} \int dr'dt' \rho(r', t') \int_0^1 du \delta(t' - t + |ur - r'|/c) \frac{|ur - r'|}{|ur - r'|}$$

and

$$\frac{\partial g}{\partial t} = \frac{1}{4\pi} \int dr'dt' \rho(r', t') \delta(t' - t + |r'|/c)/|r'| = \phi_1(0, t).$$

By comparing eqs (18) and (20) with (13) and (15) it can be seen that the gauge function $X^\alpha = f + g$ is indeed able to transform the retarded gauge into the three-vector version of the multipolar gauge.

The integral over u in eq. (16) can be simplified. Using the standard relation

$$\delta[f(u)] = \sum_i \delta[u - u^i]/\partial f/\partial u|_{u^i},$$

where $f[u^i] = 0$, in this case with $f[u] = t' - t + |ur - r'|/c$, we obtain the roots u^i from

$$(u^i - r')^2 - c^2(t - t')^2 = 0$$

to be

$$u^{i\pm} = \frac{r'}{r} \left[\cos \varphi \pm \sqrt{c^2(t - t')^2/r^2 - \sin^2 \varphi} \right],$$

where r and r' are the lengths of the vectors r and r' and φ is the angle between them. From the relation $c^2(t - t')^2 = u^2r^2 + r'^2 - 2urr' \cos \varphi$ it follows that $c^2(t - t')^2 - r'^2 \sin^2 \varphi = (ur - r' \cos \varphi)^2 \geq 0$ so the square root is always real. Next, it is straightforward to show that

$$\frac{\partial f}{\partial u} = \frac{r \cdot (ur - r')}{|ur - r'|}$$

and that

$$r \cdot (ur - r')|_{u^\pm} = \pm \sqrt{c^2(t - t')^2 - r'^2 \sin^2 \varphi},$$

so

$$\int_0^1 du h(ur) = \frac{c}{r \sqrt{c^2(t - t')^2 - r'^2 \sin^2 \varphi}} \int_0^1 du \delta(u - u^+ + \delta(u - u^-)), $$

as the $|ur - r'|$ terms in the numerator and denominator cancel and where u^+ and u^- are given by eq. (22) so

$$f(r, t) = -\frac{\mu_0}{4\pi} \int \frac{dr'dt'c(r \cdot J(r', t'))}{r \sqrt{c^2(t - t')^2 - r'^2 \sin^2 \varphi}} \int_0^1 du \delta(u - u^+ + \delta(u - u^-)).$$

In carrying out the integrations over r' and t' in (26) the integral over u gives plus one when u^+ and u^- calculated from eq. (22) lie between zero and unity and zero otherwise.
Appendix

We show that \(r \cdot \nabla h(q) = u(\partial h / \partial u) \) where \(\nabla \) is the gradient operator with respect to \(r \), \(q = ur \) and \(h \) is any function of the vector \(q \). Noting that \(\partial q^i / \partial x^j = u_{ij} \) and \(\partial q^j / \partial u = x^j \) we find that \(\partial h / \partial x^i = u(\partial h / \partial q^i) \) so \(\nabla h(u) = u \nabla_u h(u) \). Also \(\partial h / \partial u = \sum_i u x^i (\partial h / \partial q^i) \) so \(u \partial h(q) / \partial u = \sum_i u x^i \partial h / \partial q^i \). Next, \(r \cdot \nabla h(q) = \sum_i u x^i \partial h / \partial q^i \) so it follows that \(r \cdot \nabla h(q) = u(\partial h / \partial u) \) and \(r \cdot \nabla_u h(q) = \partial h / \partial u \).

References