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Abstract. Using a direct variational technique involving elliptic Gaussian laser beam trial func-
tion, the combined effect of non-linearity and diffraction on wave propagation of optical beam in a
homogeneous bulk Kerr-medium is presented. Particular emphasis is put on the variation of beam
width and longitudinal phase delay with the distance of propagation. It is observed that no stationary
self-trapping is possible. The regularized phase is also seen to be always negative.
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1. Introduction

It was Chioet al [1] who first discovered the phenomenon of self-focusing an optical pulse
in a Kerr-medium, which lead to considerable theoretical and experimental interest in non-
linear optics. Apart from affecting high-power beam propagation and influencing most of
the other non-linear phenomena, self-focusing has been identified as one of the important
effects to the success of controlled laser fusion [2–5]. It is also of direct interest for space
communication and molecular dynamic diagnostics [6–8].

Investigations of self-focusing of laser beams were primarily carried out for cylindri-
cal Gaussian beams [9–16]. In a few publications, cylindrical off axis mode [3], spiral
self-trapping [10], elliptic Gaussian beam [17] in anisotropic media were studied. In
particular, using WKB and paraxial ray approximation, Cornoltiet al [17] considered the
self-focusing of an elliptic Gaussian beam in Kerr-non-linear medium. Originally sug-
gested by Wagner [11], the trial function is substituted in the evolution equation, where the
non-linear refractive index is Taylor expanded in the transverse direction. A generalization
to include the phase was later suggested by Akhmanovet al [18]. The main drawback with
this approach is that it lacks global pulse dynamics since it overemphasizes the importance
of field closest to the pulse maximum. The moment theory [12,13] although remedies this
drawback by considering the evolution of the transverse coordinate but has not been gen-
eralized to include a proper phase relationship. Karlssonet al [16] have used variational
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approach using Gaussian beam as a trial function in optical fibres. They pointed out that
the paraxial ray approximation does not predict correctly the self-phase modulation of the
beam propagating in bulk non-linear media. Laser systems usually generate a beam which
is more nearly elliptical than circular in cross-section, it is worthwhile to study such re-
alistic situation. This technique was also used recently for investigating self-trapping of
cylindrical symmetric beams in higher order non-linear media [19]. Importance of non-
paraxiality in self-focusing phenomena has been recently highlighted [20]. In this paper,
we investigate the whole beam self-focusing for intense elliptic Gaussian beam in a bulk
Kerr-medium using variational approach.

2. Basic formulation

In the slowly varying envelope approximation, the equation that governs the evolution of
the electric field envelope in Kerr-medium is the non-linear Schr¨odinger equation
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wherez is the longitudinal coordinate,k is the linear wave number and the refractive index
n is assumed to be of the following form

n = n0 + n2jEj
2: (2)

Heren0 is linear index of refraction of the medium and the non-linear index coefficient
n2, also called the Kerr coefficient, is a basic material parameter characterizing non-linear
optical beam and pulse propagation in the medium. We investigate elliptic Gaussian beam
assuming
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where� and� are the width parameters of the beam respectively in thex andy directions.
The amplitude" as well as beam widths� and� are all real functions ofz. The second
and third terms together in eq. (1) viz.r2

?

E is spatial dispersion that spreads the beam
in the transverse direction whereas the last term, the attracting non-linearity compresses
the beam. The dynamics of self-focusing is determined by the relative competition be-
tween spatial dispersion and attracting non-linearity. If we consider only one transverse
direction, then we obtain the one dimensional non-linear Schr¨odinger equation which is
integrable by inverse scattering technique [21–23]. The resulting analytical solution is an
exact solution and represents a special class of travelling wave called soliton. Peculiar
characteristics of these solutions are that they are stable on colliding with each other and
preserve their shapes, possess infinite conservation laws and exhibit phenomenon of recur-
rence [24,25]. Later on, it was discovered that a large class of non-linear partial differential
equations exhibit soliton solutions under appropriate conditions [21]. However, eq. (1) in
two dimension representing a critical case [26] is not integrable. Nonetheless, very special
analytical solutions of two dimensional NLSE, called Townes solitons have been reported
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by Malkin [27]. Moreover, self-focusing in eq. (1) being a local phenomenon, can not be
accurately captured by global estimates. Despite considerable progress, the present theory
of critical self-focusing is still far from complete [26]. Some aspects of this genuinely
non-linear process can be investigated by considering numerical or approximate analyti-
cal methods. We adopt here the latter approach in this paper, using a powerful variational
method that has been used recently in several similar investigations [14–16,28,29]. Equa-
tion (1) can be reformulated into a variational problem corresponding to a LagrangianL
so as to makeÆL=Æz = 0 equivalent to eq. (1), viz.
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Thus, the solution to the variational problem

Æ
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Ldxdydz = 0 (5)

also leads to the solution of the non-linear Schr¨odinger eq. (1). Using the ansatz, with
expression (3) as a trial function into the LagrangianL of eq. (4), we can integrateL to
obtain

hLi =

Z
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We have arrived at a reduced variational problem. We carry out the integration in eq. (6)
to get

hLi = hL0i+ hL1i; (7)
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Variation with respect to"; "�; �; � etc and using procedure of [14], we arrive at the fol-
lowing equations for�, �, � :
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where

p =
n2

2n0
�0�0k

2"0
2 (13)

and

"0
2�0�0 = "2��: (14)

Subscripts here denote the value atz = 0 and� = kz is the dimensionless variable.
Equations (10) and (11) can be manipulated algebrically in the following form :
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where

�2 = �2 + �2: (16)

For an initially parallel beam, initial conditions are
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A necessary condition for stationary self-trapping is
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3. Discussion

We have used the Runge-Kutta method to obtain the numerical solution of the equations
(10), (11) and (12). While the equations (10) and (11) are ordinary differential equations
describing the evolution of the beam widths, eq. (12) describes the dynamics of longitudi-
nal phase during the beam propagation. The numerical method has been used as it is very
difficult to obtain analytically the solution of these coupled equations and thereby predict
the development of beam as it propagates. We, therefore, resort to numerical computation
to study beam dynamics. Sincek lies in the infrared region, gaseous discharged lasers
based on CO2 pumped excitation with following parameters have been chosen [30–32]
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Figure 1. Variation of beam widths� and� with normalized distance of propagation�
for p = 1:04166 with �0 = 0:002 cm and�0 = 0:0015 cm.

�0 = 0:002 cm; �0 = 0:0015 cm; k = 1:4� 103 cm�1:

The results are shown in the form of graphs. The parameterp is the measure of the non-
linearity. It is seen that the phenomenon of cross-focusing is observed only for certain
values ofp. Figure 1 shows such behaviour where oscillatory self-focusing of� and� is
observed forp = 1:04166, which is equal to the calculated value ofp cr obtained from ex-
pression (20). As observed in figure 1, stationary self-trapping is not possible for ellipitic
beam in a Kerr-medium as� and� keep on oscillating indefinitely. On comparing these
results with cylindrically symmetric Gaussian beam by substituting� = �, it is observed
that stationary self-trapping is possible. This is displayed in figure 1 by the horizontal
line which indicates that beam propagates without convergence or divergence in a self-
made waveguide. As evident from expression (20), this situation corresponds top cr = 1:
Equations (10) and (11) further imply uniform and equal values of beam width parame-
ters through the transit in non-linear medium. Elliptical beam however, requires slightly
higher critical value ofp. Forp < pcr, there is an overall expansion of the beam with non-
monotonic evolution of the width parameters (figure 2). On the other hand, forp > p cr,
the overall collapse of the beam takes place as is apparent from the non-monotonic evolu-
tion of beam width parameters (figure 3). Equation (12) represents the phase change with
dimensionless distance of propagation. This equation takes into account spatial diffraction
as well as non-linearity and represents the wave number shift resulting from interplay be-
tween these processes. Earlier, it has been pointed out that spatial diffraction may result in
spectral features qualitatively and quantitatively different from those of conventional phase
modulation [9]. Presently in our case, as a result of dependence ofd�=d� on j�j 2, we find
that longitudinal phase increases wheneverp decreases. Figure 4 shows variation of lon-
gitudinal phase�(�) for four different values ofp. The phase may be positive or negative
depending on the value ofp. However, the regularized phase,� reg which is defined as
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Figure 2. Variation of� and� with � in the diffraction regime forp = 1:0 correspond-
ing top < pcr. The initial widths are same as mentioned in figure 1.

Figure 3. Beam widths� and� as a function of� showing the collapse with oscillations
for p = 1:045 > pcr. The other parameters are the same as those mentioned in figure 1.

�reg = �(�) � �(�)jp=0

is always negative (figure 5). This confirms the finding of Karlssonet al [16] and is contrary
to the results of Manassahet al [9]. The latter predicted that under certain conditions
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regularized phase could change sign with distance of propagation. This is a physically
unacceptable result as wave number shift with positive or negative value, may imply results
contrary to experimental observations and may further lead to the erroneous conclusion

Figure 4. Plot of longitudinal phase�(�) for four values ofp. The initial values of�
and� are as those mentioned in figure 1.

Figure 5. Plot illustrating the dependence of�reg(�) on � for three different values of
p. The initial values of� and� are the same as in figure 1.
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that blue may lead the red in the supercontinuum. This inconsistent result of Manassah
et al [9] arises due to inherent shortcoming of paraxial ray approximation as pointed by
Karlssonet al [16]. For plane Gaussian beam, Karlssonet al [16] also obtained analytical
results withp = 2=3 predicting the value of� = 0. However, no such precise value is
possible for the case of elliptic Gaussian beam.

4. Conclusion

We have shown that elliptic Gaussian beam together with variational approach exhibits no
stationary self-trapping. Further, the parameterp which is a function of intensity as well
as non-linear refractive index, determines the fate of the beam during the propagation. It is
also observed that regularized phase is always negative.
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