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Bubbling and bistability in two parameter discrete systems
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Abstract. We present a graphical analysis of the mechanisms underlying the occurrences of bub-
bling sequences and bistability regions in the bifurcation scenario of a special class of one dimen-
sional two parameter maps. The main result of the analysis is that whether it is bubbling or bistability
is decided by the sign of the third derivative at the inflection point of the map function.

Keywords. Bubbling; bistability; bimodal chaos; 2 parameter 1-d maps.

PACS Nos 05.45.+b; 05.40.+j

1. Introduction

The studies related to onset of chaos in one-dimensional discrete systems modeled by non-
linear maps, have been quite intense and exhaustive during the last two decades. Such
a system normally supports a sequence of period doublings leading to chaos. It is also
possible to take it back to periodicity through a sequence of period halvings by adding
perturbations or modulations to the original system [1,2]. This has, most often, been re-
ported as a mechanism for control of chaos. In addition, there are features like tangent
bifurcations, intermittency, crises etc, that occur inside the chaotic regime and are not of
immediate relevance to the present work. However, if the system is sufficiently nonlinear,
there are other interesting phenomena like bubble structures and bistability that have in-
vited comparatively less attention. The simplest cases where these are realized are maps
with at least two control parameters, one that controls the nonlinearity and the other which
is a constant additive one i.e. maps of the type,

Xn+1 = f(Xn; a; b) = f1(Xn; a) + b: (1)

In these maps, ifa is varied for a givenb, the usual period doubling route to chaos is
observed. But whena is kept beyond the first period doubling pointa 1, at a point inside the
stability window of 2-cycle andb is varied, the first period doubling is followed by a period
halving forming a closed loop-like structure called the primary bubble in the bifurcation
diagram. Similarly ifa is inside the stability window of 4-cycle, andb is tuned, secondary
bubbles appear on the arms of the primary bubble. Thus as we shift the map along thea-
axis and drift it along theb-axis, the complete bubbling scenario develops in the different
slices of the space(X; a; b). This accumulates into what is known as bimodal chaos–chaos
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restricted or confined to the arms of the primary bubble. This can be viewed as a separate
scenario to chaos in such systems.

It has been confirmed that the Feigenbaum indices for this scenario witha as control
parameter would be the same as the� andÆ of the normal period doubling route to chaos
[3]. However, detailed RG analysis by Oppo and Politi [4], involving the parameterb
also indicates that ifa is kept at a critical value,ac, where bimodal chaos just disappears,
then there is a slowing down in the convergence rate leading to an index which is(Æ) 1=2.
This has been experimentally verified in a CO2 laser system with modulated losses [5].
The bubbling scenario is seen in the bifurcation diagrams of many nonlinear systems like
coupled driven oscillators [6,7], oscillatory chemical reactions, diode circuits, lasers [8,9],
insect populations [10], cardiac cell simulations [11], coupled or modulated maps [12,13],
quasi-periodically forced systems [14], DPCM transmission system [15] and traffic flow
systems [16] etc. The very fact that this phenomenon appears in such a wide variety of
systems makes it highly relevant to investigate and expose the common factor(s) in them
i.e., the underlying basic features that make them support bubbles in their bifurcation sce-
nario. The above mentioned continuous systems require maps with at least two parameters
of type (1) to model them, the second additive parameter being the coupling strength, sec-
ondary forcing amplitude etc. We note that in all the above referred papers no specific
mention is made regarding the mechanism of formation of bubbles, probably because the
authors were addressing other aspects of the problem. However, there have been a number
of isolated attempts to analyse the criteria for bubble formation in a few typical systems.
According to Bier and Bountis [3], the two criteria are: the map must possess some sym-
metry and the first period doubling should occur facing the symmetry line. Later Stone
[17] made these a little more explicit by stating that the map should have an extending tail
(with a consequent inflection point) and the inflection point should occur to the right of the
critical point of the map. It is clear that this applies only to maps with one critical point.
The relation of the extending tail to bubbling is briefly discussed in [18] also.

Bistability is an equally interesting and common feature associated with many nonlinear
systems like a ring laser [19] and a variety of electronic circuits [20]. A recent renewal
of interest in such systems arises from the fact that they form ideal candidates for studies
related to stochastic resonance phenomena [21]. To the best of our knowledge, attempts to
study any type of conditions for the occurrence of bistability are so far not seen reported in
the literature.

Our motivation in the present work is to generalize the criteria reported earlier for bub-
bling and put them together with more clarity and simplicity. As a by product, we succeed
in stating the conditions for bistability also along similar lines in systems of type (1). We
provide a detailed graphical analysis, which leads to a simple and comprehensible expla-
nation for the same in the context of the 1-cycle fixed points of such maps.

The paper is organized as follows. Inx 2, the criteria for bistability and bubbling are
stated followed by a brief explanation. The graphical analysis taking two simple cubic
maps as examples is included inx 3. The analysis and the criteria apply as such to a wide
variety of maps belonging to the same class. The relevant results of the study in 15 different
maps are condensed into a table in the concludingx 4.
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2. The dynamics of bubbling and bistability

For the special class of maps given in (1), the occurence of bubbling/bistability can be
traced to the following basic properties of the map functionf(X; a; b). The non-linearity
in f(X; a; b) must be more than quadratic.This implies that,f 0(X; a; b) (the prime
indicating derivative with respect toX), is non-monotonic inX and there exists at least
one inflection pointXi, i.e.,

f 00(X; a; b)jX=Xi
= 0: (2)

Then we differentiate the following two cases:
(i) One set of maps belonging to the above class are such that the inflection pointX i

corresponds to a minimum of the derivative function, i.e., atX = X i,

f 000(X; a; b) > 0: (3)

For such maps there exists a value ofa viz. a1, such that

f 0(X; a1; b)jX=Xi
= �1: (4)

By fixing a neara1, such thatf 0(X; a; b)jX=Xi
< �1 and tuningb, the system can be

taken through a bubble structure in the bifurcation scenario.
(ii) For the other set of maps, the inflection pointX i, is a maximum of the derivative

function, such that

f 000(X; a; b)jX=Xi
< 0: (5)

Then there exists a value ofa = a1, where

f 0(X; a1; b)jX=Xi
= +1: (6)

By adjustinga neara1, such thatf 0(X; a; b)jX=Xi
> +1, a bistability region can be

observed in the system as the parameterb is varied.
The maps under case (i) are such that for a fixed pointX �

�
, which is to the left of

Xi, but in the immediate neighbourhood ofX i,
�
�f 0(X�

�
; a; b)

�
� < 1, and hence will be

stable. Similarly, there is another fixed pointX �

+ to the right and near toXi such that��f 0(X�

+; a; b)
�� < 1 is also stable. Now, the second parameterb is simple additive for the

class of maps under consideration and hencef 0 is independent ofb. By adjustingb, the
fixed point can be shifted such thatf 0(X�

�
; a; b) becomes equal to�1, the period doubling

point of the map. ThenX �

�
will give rise to a 2-cycle with elementsX �

1 andX�

2 . Since
these are in the neighbourhood ofX i, f 0(X�

1 ) andf 0(X�

2 ) will be negative so that the
productf 0(X�

1 )f
0(X�

2 ) is positive. With further increase ofb, period merging takes place
for the 2-cycle, withX �

1 andX�

2 collapsing intoX�

+, which is just stable at the point where
f 0(X�

+) = �1. Thus in the parameter window(b1; b2), a bubble structure is formed.
The situation is exactly reversed for case (ii). Here in the neighbourhood ofX i, a fixed

pointX�

�
, to the left ofXi, will be stable sincejf 0(Xi; a; b)j < 1. Similarly X�

+ on the
right of Xi also will be stable. By adjusting the second parameterb, these will be shifted
to their respective tangent bifurcation points, i.e.,b1 whereX�

+ is born andb2 whereX�

�

disappears. Then a bistability window is seen in the interval(b1; b2).
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3. Graphical analysis

The mechanism of occurrence of bubbling and bistability explained above for maps sat-
isfying the conditions in case (i) and case (ii) respectively can be made more transparent
through a detailed graphical analysis. For this we plot the curve C1= f 0(X), the 1-cycle
fixed point curve C2 = f(X)�X and the 2-cycle curve C3= f(f(X))�X simultane-
ously as functions ofX , for chosen values ofa andb. The zeroes of C2 give the 1-cycle
fixed pointX� while those of C3 give the elements of the 2-cycle. Their stability can be
checked from the same graph, since the value of the derivative at the fixed points can be
read off. We fix the value ofa such thatjf 0(Xi; a; b)j > 1. By plotting the above three
curves for different values ofb, bistability regions or bubbling sequences can be traced for
any given map function of type (1).

For further discussion, we consider two specific forms of maps of the cubic type, which
are simple but typical examples for cases (i) and (ii). They are

M1 : Xn+1 = b� aXn +X3

n; (7)

M2 : Xn+1 = b+ aXn �X3

n: (8)

For M1, there are two critical points,Xc1 = �
p
a=3, which is a maximum andXc2 =p

a=3, which is a minimum. The inflection point occurs in betweenX c1 andXc2, i.e, at
Xi = 0 wheref 000 = 6. Hence it belongs to case (i) and the value ofa1 as defined by
(4) in this case is 1. In figure 1, the three curves mentioned above are plotted for this map
at a = 1:3. We start from a value ofb = �1:34, figure 1a, where the fixed pointX �

�
is

just born via tangent bifurcation sincef 0(X�

�
) here is+1, and the curves C2 and C3 just

touches the zero line on the left ofXi atX�

�
. Though C2 has a zero on the right, the slope

there is larger than 1 and hence it is unstable, for this value ofb. Sinceb is only additive,
increase in the value ofb, shifts C2 upwards, resulting in a slow drift ofX �

�
from left to

right. Thus asb is increased to�0:7 (figure 1b),f 0(X�

�
) = �1 andX�

�
bifurcates into

X�

1 andX�

2 . At b = �0:3 (figure 1c), the 2-cycle is stable withf 0(X�

1 ) andf 0(X�

2 ), both
negative and their product is positive but less than 1. Note that the curve C3 has developed
a maximum and a minimum on both sides ofX �

�
, which is now unstable, cutting the zero

line again atX�

1 < X�

�
andX�

2 > X�

�
. As b is further increased, they move apart. Since

the value ofa chosen is within the stability window of 2-cycle no further period doubling
takes place. AsX�

�
crossesXi, X�

1 andX�

2 move towards each other and merge together
at b = 0:7 (figure 1d) and coincide with the fixed pointX �

+. Further,X�

+ disappears by
a reverse tangent bifurcation atb = 1:34, whenf 0(X�

+) becomes equal to+1. Thus the
above events lead to the formation of a primary bubble in the window (�0:7, 0:7).

By keepinga at a value beyond the second period doubling pointa 2 of the map, the
merging tendency starts only after the second period doubling and hence secondary bubbles
are seen on the arms of the primary bubble. This can be continued until ata >= a1, the
system is taken to chaos. These sequence of behaviour are displayed in the bifurcation
diagrams (figure 2a–c) obtained numerically by iterating the map M1, 5000 times and
plotting the asymptotic values. Figure 2d shows the numerically calculated slopes of the 2-
cycle elementsX�

1 andX�

2 separately and their productf 0(X�

1 )f
0(X�

2 ) within the primary
bubble as a function ofb. It is easy to see that this is in agreement with the graphical
analysis shown in figure 1.
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Figure 1. The derivative curve C1, the 1-cycle solution curve C2 and the 2-cycle so-
lution curve C3 plotted with the value ofa at 1.3 for the map M1. In(a) b = �1:34

shows the point where the 1-cycleX�

�
is just born, withf 0(X�

�
) = +1. (b) With

b = b1 = �0:7, f 0(X�

�
) = �1 hence theX�

�
becomes unstable and the 2-cycle is just

born. (c) b = �0:3, shows the elements of the stable 2-cycle withX�

1 to the left and
X�

2 to the right of theX�

�
, which is unstable now and(d) b = b2 = +0:7, the 1-cycle

fixed pointX�

+ becomes stable after the merging ofX�

1 andX�

2 .

The stability regions of the different types of dynamical behaviour possible for M1 are
marked out in parameter space plot in the(a; b) plane (figure 3). The cone like region on
the left is the stability zone of the 1-cycle fixed point (periodicity,p = 1) and it is separated
from the escape region by the tangent bifurcation line on both sides. The parabola like
curve inside it marks out the 2-cycle (p = 2) region, while the smaller parabolas indicate
curves along which 4-cycles (p = 4) and other higher periodic cycles becomes stable until
chaos is reached. The line parallel to theb-axis at a value ofa > a1, along which primary
bubble is formed, is shown by the dotted line. It is clear that along this line, the system
is taken from escape! 1-cycle ! 2-cycle ! 1-cycle ! escape. Similarly secondary
bubbles are formed along a line drawn ata > a2 etc.

Now the above analysis is repeated for map M2, which satisfies the conditions in case (ii)
(figure 4). Here, of the two critical points of the map,X c1 = �

p
a=3 is the minimum and

Xc2 =
p
a=3 is the maximum with a positive slope at the point of inflectionX i. a1

in this case is also 1. Hence in figure 4,a is chosen to be 1.4. Figure 4b shows the
situation forb = �0:35, with f 0(X�

�
) = �1 where the 1-cycle fixed pointX �

�
period dou-

bles into a 2-cycle. For lower values ofb, we expect the full period doubling scenario
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Figure 2. Bifurcation diagrams showing the bubbling sequences for the map M1 withb

as the control parameter.(a) a = 1:3 showing the formation of the primary bubble,(b)
secondary bubbles ata = 1:7, (c) bimodal chaos ata = 1:76 and(d) the derivatives
for the 2-cycle elements witha = 1:3 calculated numerically and plotted separately as
series (I) and their product viz.f 0(X�

1 )f
0

(X�

2 ), as series (II).

Figure 3. Parameter space plot in(a; b) plane for map M1 defined in (7). The minimum
a value for having period doubling defined by the eq. (4), viz.a1, the second period
doubling pointa2 and the accumulation pointa1 are explicitly marked.
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Figure 4. Here the curves C1, C2 and C3 for the map M2 in (8) witha = 1:4 is
plotted.(a) At b = �0:5, it is clear from the figure that the 1-cycle solution is unstable
and the 2-cycle is stable.(b) b = �0:35 gives the first period doubling point i.e., here
f 0(X�

�
) = �1. (c) At b = b1 = �0:1, f 0(X�

+) = +1, i.e., the creation of a new fixed
point X�

+ by tangent bifurcation. Note that stillX�

�
is stable and(d) b = b2 = 0:1,

f 0(X�

�
) is +1. Hence the existing fixed pointX�

�
disappears. Thus(b1; b2) gives the

bistability window.

sincef 0 is monotonic beyond this point (figure 4a). However, asb is increased to�0.1,
f 0(X�

+) = +1, and the other 1-cycle,X �

+ to the right ofXi is born by tangent bifurcation.
Note that at this pointX�

�
is still stable with

�
�f 0(X�

�
)
�
� < 1. This continues untilb = +0:1,

wheref 0(X�

�
) = +1 and henceX�

�
disappears. The birth ofX �

+ is concurrent with the
maximum of C2 touching the zero line(b = b1) while the disappearance ofX �

�
occurs as

the minimum of C2 touches the zero line(b = b2). As b is increased and C2 is moving up
it is clear that the former will take place for a lowerb value than the latter, as the maximum
of C2 occurs atX > Xi and minimum atX < Xi (slope being positive atXi). Hence
b1 < b2, or there is a window(b1; b2), where bistability exists, which in our graph is
(�0:1, 0:1) for a = 1:4. X�

+ is stable beyond this point also and its period doubles as
b is increased tob = +0:35, wheref 0(X�

+) = �1. The full Feigenbaum scenario then
develops for higher values ofb.

By keepinga at higher values and tuningb, the bistability can be taken to 2-cycle,
4-cycle and even chaotic regions. These are shown separately in the bifurcation dia-
grams plotted numerically for M2 (figure 5). Figure 6 is the parameter space plot in the
(a; b) plane. The quadrilateral like region marked as (I) beyonda > a 1 is the bistable
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Figure 5. The bifurcation diagrams for the map M2, showing the bistability in the
central region.(a) a = 1:4, shows the 1-cycle bistability and period doubling scenario
to both sides,(b) a = 2:1, shows the 2-cycle bistability,(c) the 4-cycle bistability at
a = 2:25 and(d) a = 2:4, the bistability can be seen in chaotic regions.

Figure 6. Parameter space plot in(a; b) plane for map M2. The minimuma value
for bistability viz. a1, and the higher order bistability pointsa2, etc. are marked. The
quadrilateral marked as (I) gives the bistable region for 1-cycle and (II) that for 2-cycle
etc.
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region for 1-cycle, while quadrilateral (II) is that for 2-cycle etc. The area marked with
p = 1, is the stability region of 1-cycle whilep = 2, that for 2-cycle etc. When the system
is taken along the dotted line beyonda1, bistability is seen in the central region, followed
by period doubling bifurcations to both sides, until chaos is reached.

4. Conclusion

Although the above discussion is confined to two simple cubic maps, the analysis is re-
peated for a large number of maps of type (1) chosen from a wide variety of situations
covering different functional forms like exponential, trigonometric and polynomial maps.
The results are condensed in table 1. We find that the qualitative behaviour in all cases
remain the same and depends only on the criteria (2)–(6). Hence the pattern of scenario
detailed in this paper can be taken to be atypical as far as maps of the form (1) are con-
cerned.

Table 1. The characteristics of 2 parameter 1-d maps that exhibit bubbling/bistability
related to their 1-cycle fixed points.

f(X) X
�

Xc Xi f
000(Xi) Bubble Bistable

at b = 0

b+X3 � aX 0,�
p
a+ 1 �

p
a=3 0 +6 Yes No

b�X3 + aX 0,�
p
a� 1 �

p
a=3 0 �6 No Yes

b+ aX=(1 +X
2) 0,�

p
a� 1 �1 �

p
3 +3a=16 Yes No

b+ 5aX=(1 +X)2 0,�
p
5a � 1 1(a = 4) 2 +0.49 Yes No

4a(X5 � 5X3=4+ 0,�5,�1 �0:35 0 �30a No Yes
5X=16) + b (a = 4) �0:8 0.6124 +60a Yes No
4aX(1 �X) 0, 3/4 0.15, 0.2959 +78:3a Yes No
(1� 2X)2 + b (5�

p
5)=8 0.5, 0.9 0.7041 �78:3a No Yes

(a = 4)
b+ aX

2 sin�x 0 0 0.485 �8.5 No Yes
�0:73 1.275 +23 Yes No

b+ exp(�aX2) 0.487 0 �
p

1=2a +3:43a2 Yes No
(a = 3) �1:5

X exp(a(1 �X)) 0, 1 1=a +2=a +a2e(a�2) Yes No
+b

X exp(a(1 +X)) 0,�1 �1=a �2=a �a2e(a�2) No Yes
�b

X exp(a(1 +X)) 0,�1 �1=a �2=a +a2e(a�2) Yes No
+b, a > 2
4a(X3 � 3X2

=2+ 0, 1/2,1 3/4 1/2 +24a Yes No
9X=16) + b (a = 4) 1/4
4aX(1 � 2

p
x+ 0, 9/16 1/4 9/16 +7:11a Yes No

x) + b (a = 4) 1
�a cos(n(1� x))) 0.2675 �8.9, �6.4 �0.65 No Yes
b+ a, n = 2=�, (a = 2:5) �3.9, 1, �1.45 +0.6 Yes No
a(2, 5),b(�9, 11) 5.9, 3.46 �0.6 No Yes

10.9 8.4 +0.65 Yes No
b+ sin(ax) 0, ��=2a 0 �a3 No Yes

�
p

6(a � 1=a3) �=a +a3 Yes No
2�=a �a3 No Yes
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The criteria for bistability reported here are certainly novel while those for bubbling are
more general in nature compared to earlier studies. They can be used as a test to identify
maps in which bistability or bubbling is possible and also to isolate the regions in the pa-
rameter space(a; b) where they occur. Our main result is that whether it is bistability or
bubbling is decided by the sign of the third derivative of the map function at the inflec-
tion point. If f 000(Xi) is positive, because of the concave nature of the derivative, tangent
bifurcation will precede period doubling asb is increased. Hence bubbling structure is pos-
sible. Similarly whenf 000(Xi) is negative, curve off 0 is convex and hence period doubling
precedes tangent bifurcation, leading to bistability. In casef 000(Xi) = 0, higher deriva-
tives must be considered for deciding the behaviour. So also when considering bubbling
or bistability in higher order cycles the corresponding iterate of the map function must be
checked for the inflection point and the sign of the third derivative at that point.

Bubbling can be looked upon as an extreme case of incomplete period doublings and
the latter has been often associated with positive Schwarzian derivative [22]. But for the
system under study, it is easy to check that this is always negative (independent of the form
of the map function), because of properties (2), (3) and (5). In fact, a few such maps have
been reported earlier [23] though in a totally different context.

The bubbling scenario in maps of the type M1, leads to bimodal chaos that is restricted
to the arms of the primary bubble. Such confined chaos or even low periodic behavior
prior to that, makes them better models in population dynamics of ecosystems than the
usual logistic type maps [24]. Attempts to extend the criteria to continuous and higher
dimensional systems are under way and will be reported elsewhere.
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