PRAMANA © Indian Academy of Sciences Vol. 53, No. 4
— journal of October 1999

physics pp. 783-794

Pressure—volume calculation in bcc metals using Born
stability criteria

PIYUSH KUCHHAL and NARSINGH DASS
Physics Department, University of Roorkee, Roorkee 247 667, India

MS received 16 January 1999; revised 15 May 1999

Abstract. A simple analytical two-body potentigi(r) = —Ar~"™ + B exp(—pr™) is considered

for P-V calculations in bcc metals using Born stability criteria. It is shown that the stability of bcc
metals can be expressed uniquely as a function of a paramnédéescussed in the text). The P-V
calculations are done in ten bcc metals. The calculations are compared with the experimental data
of shock-wave measurements and also with other potential available. It is found out that the present
potential is better than the other two-body potentials in case of bcc metals. Further, the calculations
done for TOEC and the first pressure derivative of SOEC are found in good agreement with the
reported results.

Keywords. Two-body pair potential; Born stability criteria; second and third order elastic constants;
bcc metals.
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1. Introduction

The study of high pressure behaviour of materials has become quite interesting in recent
years because of the discovery of new crystal structures and structural phase transitions and
also due to many geophysical and technological applications. Moreover, the anharmonic-
ity of solids can be examined by studying the P-V behaviour [1]. The P-V calculations are
performed by using the empirical two body interatomic central potential. Though the in-
teratomic forces in solid are admixture of the central, non-central, and many-body forces,
even then the use of two-body central force potential is quite successful in the study of
many properties of solids [2]. However, it will not be out of place to mention here that
band structure methods can also be used for P-V calculations [17].

Max Born [3,4] investigated the conditions under which a crystal lattice will be thermo-
dynamically stable. Necessary condition for the thermodynamic stability of a crystal lattice
is that the crystal be mechanically stable with respect to an arbitrary homogeneous defor-
mation. Born [3,4] derived the mathematical expressions for cubic lattices of the Bravis
type on the assumption of two-body central potential of a very general natGrg,as 0
andCi; —Ci2 > 0 whereC;; represents second order elastic constants of the solid.
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Figure 1. Variation of the ratio of elastic modui’';;:/C1» with the potential parameter
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Figure 2. Variation of potential function in case of Mo versus interatomic distance.

Milstein [1,2,5] had clearly shown that generalized Morse potential is unable to give the
P-V calculations in case of bcc metals. On the other hand, Thakur [6] had used two-body
logarithmic potential for P-V calculations in case of bcc metals but the computed results
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are not in good agreement with the shock-wave measurements as is evident from tables 2, 4
and figure 3. Therefore, it can be concluded that the two-body potential so far available are
unable to give good P-V data in case of bcc metals.

Hence, the aim of the present paper is to give a suitable two-body potential which can
give good results of P-V calculations using Born stability criteria.

2. Theory and procedure

For P-V calculations, we suggest the two-body potential as
¢(r) = Ar~" + Bexp(—pr™), 1)

where A, B andp are positive constants and are expressed in unit of efy.emg and
cm~ ™, respectively.r is the distance from a lattice site chosen as the origin to a given
lattice site with coordinates specified by the three intebers, I3 as

1
r=gao(lf +15 +13)"/?, @

whereay is lattice constant at zero pressure and absolute zero temperature. Since this
potential is basically empirical one in nature, there is no limit to the number of different
function which can be calculated from a given set of experimental data. Thus, any fam-
ily of potential function should include relatively short range steep potentials as well as
longer-range shallower potentials. Further, the potential paramdteBsandp are deter-
mined by using the experimental valuesaf; , Ci» andag keepingm andn as adjustable
parameters.

Born criteria for stability of a crystal can be described in terms of mathematical expres-
sion as

222@‘?2 ~0. ©)

This is the condition of the equilibrium of a crystal in the absence of the external force.
Born [3,4] has derived the mathematical expressions for the elastic co6staandC' 5
for cubic crystal with two-body interatomic interaction and the same can be written for bcc
metal as:

6= X T S @

Chpa=2 222112 (5)

The summation in (3)-(5) are over all lattice sites (except the otigia I, = I3 = 0)
in the crystal.
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Table 2. PressureP(Kbar), as a function of volume in V, Mo and Why using present
potential. Exptl. data for V, Mo and W-are taken from [7].

\ Mo W-a
V/Vo P P P V/V,, P P P V/V,, P P P

(exptl.) Present Othets (exptl.) Present Othets (exptl.) Present Othets
0.995 0.0 7.94 80 0997 0.0 801 800 0997 0.0 9.49 9.0
0.940 100 109.09 102 0.962 100 110.02 105 0.967 100 111.83 107
0.898 200 206.54 201 0.934 200 204.24 191 0942 200 208.50 196
0.862 300 307.62 320 0.910 300 29531 273 0918 300 31242 290
0.831 400 41045 451 0.887 400 392.74 362 0.898 400 408.35 377
0.806 500 50599 574 0.866 500 49148 453 0.879 500 508.27 468
0.783 600 60546 693 0.849 600 579.02 533 0.862 600 605.66 558
0.763 700 70224 796 0.832 700 674.08 618 0.847 700 698.46 642
0.744 800 80422 889 0.817 800 764.81 697 0.832 800 798.28 732
0.727 900 904.76 964 0.803 900 855.79 773 0.819 900 890.93 813
0.712 1000 1000.58 1021 0.788 1000 961.62 856 0.807 1000 98191 889
0.698 1100 1099.51 1066 0.776 1100 1050.40 922 0.795 1100 107851 967
0.684 1200 1205.44 1103 0.764 1200 114587 987 0.784 1200 1172.33 1039
0.754 1300 1230.07 1040 0.774 1300 1262.30 1104

0.744 1400 1318.78 1091 0.764 1400 1357.00 1169

0.734 1500 1412.26 1140 0.754 1500 1456.72 1231

0.746 1600 1540.31 1280

0.738 1700 1627.08 1327

0.729 1800 1730.08 1377

0.721 1900 1825.48 1420

*Calculated from logarithmic potential [6].

Table 3. PressureP (Kbar) as a function of volume in Li, Na, K and Rb by using
present potential. Exptl. data for all of these elements are taken from [8].

Li Na K Rb

V/Vo P P P P P P P P P P P P

(Exptl.) (Present) Othefs(Exptl.) (Present) Othets(Exptl.) (Present) Others(Exptl.) (Present) Othets
0.9200 6.5 12973 13.27 3.2 7.17 7.46 13 3.61 3.74 0.8 3.10 3.28
0.8800 13.5 21.610 22.26 74 1204 1277 3.4 6.04 6.37 2.2 5.38 5.58
0.8400 22.3 32.070 33.17 12,6 18.05 19.48 5.9 9.03 9.67 3.9 8.09 8.44
0.8000 329 44740 46.29 19.1 25.47  27.93 9.0 1271 13.78 6.1 11.45 11.98
0.7600 46.0 60.090 61.92 27.2 3467 3867 129 1726 18.88 88 1563 16.34
0.7200 62.3 78.670 80.38 374 46.15 5181 17.7 2289 2520 122 20.87 21.65
0.6800 82.8 101.140 102.05 50.6 60.54 6834 237 2993 3299 166 27.47 28.09
0.6400 108.9 128.270 127.32 67.9 7868 8884 315 3876 4252 224 3584 3584
0.6000 142.7 160.920 156.66 90.9 101.76 114.15 41.7 4993 54.16 30.0 46,53 45.12
0.5600 187.3 199.980 190.59 1224 131.37 14526 554 6418 6832 404 60.33 56.10
0.5200 247.6 246.170 229.64 167.1 169.77 183.41 740 8255 8548 551 78.33 69.36
0.4800 232.7 22020 230.07 103.7 106.51 106.28 76.6 102.13 84.97
0.4400 3345 287.40 287.18 139.4 138.18 131.49 109.5 134.07 103.49
0.4000 200.0 180.73 162.22 163.6 177.74 12553
0.3800 243.7 20751 180.14 - 205.62 138.16
0.3600

261.2

238.77 152.14

*Calculated from logarithmic potential [6].
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Table 4. Pressure, P(kbar), as a function of volume in Cr, Nb and Ta by using present
potential. Exptl. data from [7] for Cr and [9] for Nb and Ta.

Cr Nb Ta
ViV P P P V/Vo P P P V/Vo P P P

(exptl.) Present Othets (exptl.) Present Othets (exptl.) Present Othets
0.996 0.0 6.59 6.57  1.000 0.0 0.00 0.00 1.0000 0.0 0.00 0.00
0.933 100 125.96 125.89 0.9485 100 107.63 97.01 0.9543 100 98.87 90.36
0.890 200 227.51 230.67 0.9072 200 21513 189.72 09169 200  197.07 17594
0.856 300 32219 327.89 0.8730 300 321.85 288.86 0.8852 300 295.07 266.67
0.827 400 414.94 41769 0.8436 400 42898 396.12 0.8576 400 31342 364.85
0.803 500 501.38 493.13 0.8180 500 53589 506.11 0.8334 500  491.23 467.45
0.782 600 585.21 556.92 0.7953 600 64293 616.38 0.8172 600 563.53 544.34
0.764 700 663.89 607.81 0.7751 700  749.20 719.08 0.7992 700  687.25 673.09
0.748 800  739.70 648.73 0.7567 800  856.19 813.21 0.7744 800 78537 768.99
0.734 900 810.97 680.34 0.7400 900 962.65 895.94 0.7580 900 884.06 857.39
0.720 1000 887.29 707.39 0.7247 1000 1068.85 967.05 0.7430 1000 981.98 935.84
0.7105 1100 1175.57 1027.27 0.7291 1100 1079.88 1004.60

0.6974 1200 1281.62 1076.75 0.7161 1200 1178.22 1064.07

0.6852 1300 1387.53 1116.85 0.7040 1300 1276.14 1114.07

0.6738 1400 1493.23 1148.67 0.6926 1400 1374.47 1156.20

0.6632 1500 1597.80 1173.12 0.6820 1500 1471.59 1190.23

0.6532 1600 1702.43 119151 0.6719 1600 1569.60 1217.89

0.6437 1700 1807.56 1204.72 0.6623 1700 1668.04 1239.74

0.6348 1800 1911.47 1213.33 0.6523 1800 1776.42 1257.77

0.6447 1900 1863.04 1268.22

0.6366 2000 1959.62 1276.25

0.6288 2100 2057.03 1280.98

0.6214 2200 2153.65 1282.73

0.6144 2300 2249.02 1281.97

*Calculated from logarithmic potential [6].
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Figure 3. Comparison of the pressure-volume behaviour of sodium obtained from the
present potential with (i) different and (ii) from the logarithmic potential with different
m together with the experimental data.
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From (1)
d¢(T) _ 1 [ TLA m—2 m
dTZ - 5 _rn+2 - Bmpr eXp(_pr ) ’ (6)
and
d2¢(7.) _ 1 —_n(n_'_ 2)A m—4 m
(dr?)? 4 I R — Bm(m — 2)pr exp(—pr™)

+Bm?2p?r?m- 4exp(—prm)} (7)

The relation forC'y; andC, can be expressed uniquely, if we define the following new
parameters:

A= A(ao/2)7", )

q =p(ao/2)™, (9)
and

p=F+1+13)"7° (10)

Substituting (8)-(10) into (6) and (7), we get

do(r) 2 [ nA " m
Rl e — Bmgp™ ? exp(—qp™)| , (11)
and
dZQS(r) 4 _—TL(TL + 2)Al m—4 m
(dr2)? = _g A — Bm(m - 2)qp exp(—gp™)
+Bm’ ¢’ p*" 4e><p(—qpm)]- (12)

From (3) and (11), we get

A=
n e(l;)

(13)

where

(li,q) ZZZMP exp(—gp™), (14)
1 2 3

=222 e (15)
ll lz l3
From (4), (5) and (12), we get
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_ Bm —(n +2)d(l;q) f(1;)
= [ (i)

_Bm [—(n +2)d(lig)h(ls)
0

Tyl q)} , (16)

where

S Y ), (18)
I

la I3

=335 ttgp™ " exp(—qp™)[map™ — (m - 1), (19)

i 2 I3

=33 Bz, (20)

l1 l> I3

Q) =YY > Bi3gp™ *exp(—gp™)[mgp™ — (m — 1)), (21)

i la I3

In considering the summation in (16) and (17), we have taken 89,460 atoms (except
originl; = ls = I3 = 0) in the bcc crystals. Further, the summations are accomplished
by summing over integer value o6f,, andis subject to the restriction that, [, andis
are either all even or all odd. Although the atoms interact through a two-body potential
function¢(r), each atom interacts with all the other atoms in the lattice, the contributions
of these interaction are taken into account over a sufficiently large number of lattice sites.

Before applying the present potential in bcc metals, we have to check the Born stability
criteriai.e.Cy2 > 0andCy; — Ci2 > 0.

SinceBm/aj is positive for the present potential, the first stability condition > 0 is
satisfied provided the function in the bracket in (17) is also positive. In present study, this
function is evaluated for bcc lattice and has been found to be positive whexn ()3 for
n = 2andm = 1, (ii) ¢ > 1.29 for n = 3 andm = 1 and (iii) ¢ > 3.1 forn = 4 and
m = 1. The second condition for Born stability criteria is expressed uniquely as a function
of g as

Cui [0+ 240, )7 (00)/e1)] — gllig)
Oz~ [0 + 2, () /o) — k(i) (@2)

The ratioC1, /C;» is determined as a function gf The ratioC'y; /C1» versus; is plotted
in figure 1 forn = 2 andn = 3 keepingm = 1 in both the cases. Figure 1 shows that
C11/C12 is evidently greater than unity upto @) = 8.53 forn = 2 andm = 1, (ii)
g = 6.52 forn = 3andm = 1 and (iii) ¢ = 5.32 forn = 4 andm = 1. The values of
(4,1 /C4» obtained from the potential lie within the experimental data for all the bcc metals.
Experimental values of the lattice parametgrand the elastic constants; andC»
are listed in table 1 for each bcc metal. For a known valué gf/ C», we can obtain the
value ofq from (22). Once the value gfis available, one can obtain, the valuelbfrom
(16) using the experimental data@f; . The value ofd’ can then be computed from (13).
The value ofA’ andq give the values oA andp, and can be obtained from (8) and (9)
respectively.
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3. Pressure—volume calculations

When the crystal is subject to hydrostatic pressure, the lattice parameleremain equal
i.e. (a1 = as = ag = a) and the pressure (&t = 0K) is given by

do(r)
2GZZD% R (23)

i 12

with

r= ol 45+ 1) (24)
and the corresponding relative volume is given by

V/Vo = (a/ao)®. (25)

Thus, the pressure can be calculated from (23). In tables 2, 3 and 4, the calculated
values ofP versusl’/V} in case of 10 bcc metals are compared with the experimental data
along with the logarithmic potential [6] by using the parameter needed from table 1. The
experimental pressure data alongwithly are taken from McQueen and Marsh [7] for V,

Mo, W-a. and Cr; from Rice [8] for Li, Na, K, and Rb; and from McQuestral [9] for Nb
and Ta.

The pressure is calculated from the present potential as well as from the logarithmic
potential [6] using optimum value afi andn and the results are reported in table 3 for Li,

Na, K and Rb; in table 4 for Cr, Nb and Ta; and in table 2 for V, MooVsifong with the
available experimental data. The calculated results from the present potential are in very
good agreement with the experimental data in the whole range of compression in each bcc
metal as is evident from the tables 2—4.

Theoretical P-V calculations are sensitive to the parametessdn involved in the
present potential. For fixed value of = 1, whenn is varied from 2 to 5 then it is
observed that as increases, the pressure decreases at high compression whereas at lower
compression the effect afis small as shown in figure 3.

4. The third order elastic constant (TOEGC;) and pressure derivative of second order
elastic constant (SOEQG)

For a cubic crystal, there are three independent second order elastic constants,
namely, C11, Ci2, and Cy4 and six independent third order elastic constants
C111,C112, C123, Cus6, C144 andC1gg. In the central force model, the elastic constants
follow the Cauchy relations:

Ci2 = Cuy (26)
Ci12 = Ciss (27)
Ci23 = Cus6 = Chaa. (28)

Pramana — J. Phys.Vol. 53, No. 4, October 1999 791
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Hence, we need’y; andC,, as SOEC and’;;1,C}12 andCy23 as TOEC for further
calculations. The expression for the SOHEE given by (4) and (5) and third order elastic
constants are given below as:

3 63
om =5 XY S uE, (29)
l1 Iz I3
3 . 83
O =5 XY B (30)
l1 Iz I3
and
a? 2127207 9(r)
Cizs = 5 %j%jglflél?% B2 (31)

The values of TOEC can be computed from (29) to (31). Further, the pressure deriva-
tives of SOEG can be calculated which are given by the following relations [10].

_0Cu _ 201 42012 4+ Cin + 201

!
G = oP C11 + 2C» (32)
and
ro_ 0C12 _ —Ci1 — Ci2 4+ Cra3 +2Cq12 (33)
27 ap Ci1 + 2Ci2 '

Moreover, the isothermal bulk modulu3y, and its first pressure derivativBy-, can also
be calculated from the relations given below

1

Br = g(Cn +2C2) (34)

and
! 1 ! !
Br = §(011 +2C71,) (35)
The TOEG Ci11, Ci12 andCi»s first pressure derivative of SOECandB/. are calcu-

lated for 10 bcc metal using our potential and are listed in table 5. The experimental values
of B/ are also listed in the same table for comparison. We have also reported the pressure

variation of isothermal bulk-modulus in table 6 in case of Li and K along with the available
data of By from other results.

Analytical form of the present potential

The computed potential parameters are used to arrive at a graphical representation of bcc
metal, using eq. (1). Figure 2 shows the variation of our potential function versus the in-
teratomic separationfor Mo with different value ofn andn. Perusal of figure 2 reveals
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Table 5. Third order elastic constants, first pressure derivative of second order elastic
constants and isothermal bulk modulu§’at 0 K and P = 0 kbar.

Elements Cri11 Ci12 Cia3 1y Cly B,
(kbar) (kbar) (kbar)
Li 1600 —336 —525 4.35 3.70 3.91
(3.27p
Na —873 —206 —302 4.54 3.98 4.16
(—928y (—189y (—197p (4.03p (3.53p (3.70p
K —441 —99.3 —150 4.45 3.86 4.06
(—424y (—88p (—-101y (4.31p (3.62¢ (3.97p
Rb —387 95.9 —137 4.63 4.10 4.28
(3.199
Nb —23800 —4250 —6050 4.38 3.35 3.39
(4.03p
Ta —25200 —4310 —6130 4.36 3.26 3.63
(3.58p
v —20900 —3890 —4370 4.59 3.33 3.75
(3.59p
W —44400 —7150 —6090 4.66 2.95 3.52
(3.58p
Mo —37500 —6030 —5130 4.67 2.94 3.52
(3.72p
Cr —28700 —2590 —4080 5.19 2.00 3.60
(4.759

aTaken from ref. [13];Ptaken from ref. [14].

Table 6. Variation of B with volume at 0K in Li and K.

Li K
V/Vo Br Br V/Vo Br Br
(Present) (Others) (Present) (Otherd)
1.0000 133 123 1.0000 36.6 37.0
0.9850 140 130 0.9928 37.6 38.0
0.9653 150 140 0.9697 41.0 42.0
0.9456 161 149 0.9467 44.6 46.0
0.9259 172 162 0.9236 48.6 50.5
0.9062 184 175 0.9005 53.0 55.5
0.8865 197 191 0.8774 57.8 61.5
0.8543 63.0 68.5
0.8312 68.7 76.0
0.8081 75.0 84.5
0.7850 81.9 94.0
0.7619 89.5 105.0

aTaken from ref. [15];Ptaken from ref. [16].
that the variation ofn in association witln incur the vertical as well as horizontal shift

of potential minima, and hence indicates the inclusion of exchange and correlation effects
[11] and the three body effects [12].
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5. Conclusion

It is quite clear from the above discussions that the present potential works very well and
is successful in representing the P-V calculations in bcc metals, whereas (i) the Morse
generalized potential can not be used at all and (ii) the results obtained from logarithmic
potential are not in good agreement with the experimental data particularly in high com-
pression region. Moreover, the present potential is also successful to give the third order
elastic constants as well as first pressure derivative of second order elastic constants and
isothermal bulk modulus. Phonon frequencies may also be calculated using the same po-
tential which we will consider for future study.
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