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Abstract. Finite clusters of atoms or molecules, typically composed of about 50 particles (and 
often as few as 13 or even less) have proved to be useful prototypes of systems undergoing phase 
transitions. Analogues of the solid-liqnid melting transition, surface melting, structural phase 
transitions and the glass transition have been observed in cluster systems. The methods of nonlinear 
dynamics can be applied to systems of this size, and these have helped elucidate the nature of the 
microscopic dynamics, which, as a function of internal energy (or 'temperature') can be in a 
solidlike, liquidlike, or even gaseous state. The Lyapunov exponents show a characteristic 
behaviour as a function of energy, and provide a reliable signature of the solid-liquid melting phase 
transition. The behaviour of such indices at other phase transitions has only partially been explored. 
These and related applications are reviewed in the present article. 
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1. Introduction 

One major impetus for research in the dynamics of nonintegrable systems has been the 
hope of understanding the basis for the effectiveness of statistical mechanical ideas in the 
description of systems with several degrees of freedom [1]. On the one hand, while the 
ergodic hypothesis is presumed to be valid for generic many-body Hamiltonians, it is 
difficult to prove for any particular system since a realistic dynamical picture of a multi- 
particle system is not easy to obtain owing to the extremely large number of degrees of 
freedom. On the other hand, the application of ideas of statistical mechanics to few-body 
systems is fraught with difficulty. 

A regime where some progress can be made has been provided in recent years by 
cluster systems, namely aggregates of atoms or molecules consisting of typically between 
10 and 1000 particles [2]. These systems are small enough that the explicit dynamics can 
be followed for reasonably long times. They are also large enough for it to be possible to 
characterise them as having a well-defined temperature or being in a particular state of 
matter. Indeed, in recent years, a major interest in cluster studies is the elucidation of 
simple phase transformations [3,4]. The study of the dynamics at these phase 
transformations is the subject of this article. 

Clusters, being intermediate in size between molecules and bulk matter, have physical 
and chemical properties which can sometimes be very different from the properties of a 
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bulk sample of the same material. Technological interest in clusters thus obtains from 
the practical possibility of engineering materials with desired physical characteristics 
[2, 5, 7, 8]. 

Theoretical studies of the dynamics of cluster systems are usually carried out using 
classical molecular dynamics (CMD) techniques. The connection between the 
microscopic dynamics and thermodynamics or statistical mechanics can be explored in 
some detail by studying clusters of increasing size or varying other parameters of the 
system such as particle mass or the interaction potential. These studies also play an 
important role in clarifying the spread of ergodic behavior in many-body systems. 

In the context of nonlinear studies, finite clusters are important as they provide useful 
examples of micro- and mesoscopic systems where the methods of nonlinear dynamics 
(which were essentially developed with low-dimensional systems in mind) can find 
application. For a N-particle cluster, the number of freedoms is 3N, which is quite large 
for even the smallest (N ~ 7) systems studied in this context. Given the highly nonlinear 
nature of the interparticle interaction, the motion is unlikely to be globally regular at 
t-mite temperatures. Thus, chaotic dynamics may provide the basic mechanism for 
inducing statistical behavior in cluster systems by facilitating the rapid mixing among 
modes and consequent redistribution of vibrational energy. In general, stochastic 
trajectories are presumed to be the main cause for giving rise to statistical behavior, when 
the ergodic hypothesis, namely that the time averages are identical to the phase space 
averages, is expected to hold. This statistical description is manifest in the measured 
values and the distributions of different quantities [9-11]. 

With regard to simple phase transitions, it is now well-established that although 
the numbers of atoms or molecules present is small compared to bulk material (,,~ 1023), 
clusters can exhibit structural isomerization [12-15] and related phenomena. Small 
clusters go from a solid-like phase to a liquid-like phase as the temperature or total 
internal energy is increased [16]. In bulk matter, the temperature at which the solid 
melts, Tin, is same as the temperature at which the corresponding liquid freezes, 
Tf. However, Tm and Tf can be different in finite clusters [17], when there can be 
dynamical coexistence [18, 19] of both of these phases in the intermediate temperature 
regime (between Tf and Tin) when clusters start melting. This phenomenon is distinct 
from the phase change in bulk matter, and has been experimentally verified; extensive 
molecular dynamics and Monte Carlo simulations [16] also support this picture. 
Cluster systems can show yet another form of coexistence in surface melting where 
atoms in the cluster core are at a lower effective temperature and are in a solid state, while 
atoms on the surface are in a liquid-like state and show much greater diffusivity [13, 20]. 
At temperatures below the melting transitions, there can also be structural phase 
transitions [21]. In addition, the so-called glass transition can also be mimicked by cluster 
systems [22]. 

The methods and techniques of nonlinear dynamics of relevance to the study of atomic 
clusters are reviewed in this article. These include the computation of Lyapunov 
exponents, in particular the largest (maximal) one which has been found to be a reliable 
phase-space indicator of cluster phase change, the Kolmogorov (K-) entropy, short time 
distributions of local K-entropy and Lyapunov exponents and Lyapunov spectra. These 
prove invaluable in understanding phase transitions since there are few available reliable 
measures for exploring the process of phase change in finite systems. 
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In the next section we briefly describe the classical methodology of cluster simulations, 
and define the Lyapunov exponents and the K-entropy. We then discuss the connection 
between phase transformations (solid-to-liquid) and the maximal Lyapunov exponent 
(MLE). This is followed by a review of some of the other techniques that have been 
applied in cluster dynamical studies. We conclude in § 5 with a summary. 

2. Cluster dynamics, Lyapunov exponents and the Kolmogorov entropy 

The simulation of clusters is usually performed through Monte Carlo (MC) methods, or 
through molecular dynamics (MD) [23], namely the integration of the relevant 
Hamilton's or Newton's equations of motion. MD simulations can be carried out either 
at constant energy, when the microcanonical ensemble obtains, or at constant 
temperature, with the use of thermostats, in which case the canonical ensemble results. 
For dynamical studies the most relevant are the MD methods although some progress 
is being made in the extraction of dynamical information from equilibrium MC 
simulations [24]. 

Details of the molecular dynamics simulations of N-particle systems have been 
extensively documented [23], and the computational methodology of integrating 
Newton's equation of motion has been developed in considerable detail. Since a cluster 
is an isolated group of particles, the boundary conditions are simpler to incorporate than 
in bulk or liquid-state simulations. The interaction between particles is normally taken to 
be composed of pair-potentials, so that the total potential energy V for a configuration 
R = - rb  r 2 , . . . , r N  is 

N 

= V ( r , j )  (1) 
i < j  

where r/ is the position of the i th particle and r 0 - [ri - rjl is the distance between 
particles i and j. The pair-potential V(r)  is usually taken to be of a simple analytic 
form, such as the Lennard-Jones (for rare-gas systems), Yukawa (for nuclear systems) 
or Gupta (for metallic clusters) [25-28]. The total potential energy, l), is an extremely 
complicated function of the configuration R. Finding the ground state, namely the 
global minimum, is a tricky problem, although for small enough clusters, this and 
the lowest few local minima (corresponding to isomers) can be located by several 
techniques. 

The dynamics follows Newton's equations, which are (m~ is the mass of the ith particle) 

m i r i  - -  O r  i i = 1 , 2 , . . . , N  (2) 

The total energy, namely the Hamiltonian 7 - / = T + V ,  where T = ~ ½ m i f i  2, is 
conserved, as are all the components of the total momentum and the angular momentum, 
giving a total of 7 constants of the motion. At any given total energy, the 'temperature' of 
the cluster is defined through the average kinetic energy as 

r - 2 ( r )  
(3N - 6)kb (3) 
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kb being the Boltzmann constant and ( ) denoting an average over the entire trajectory. 
The spectrum of Lyapunov exponents of a given dynamical system characterizes the 

dynamical instability of the orbits. An N-freedom hamiltonian system has 2N Lyapunov 
exponents, A1,.. . ,  A2u which are defined by the eigenvalue spectrum of the squared 
Jacobi matrix [29] 

J ( t ) -  O(p(t),r(t)) 
c3(p(0), r(O)) ' 

(pi ---- mri and p -- P l " "  PN) (4) 

in the asymptotic limit i.e., 

{e2AW,..., e 2;~v~) = eigenvalue spectrum of JT(T)J(T) as T -~ :x) (5) 

Therefore, for a N-particle system in three dimensions there are 6N Lyapunov exponents, 
which come in matching positive-negative pairs as a consequence of Liouville's theorem 
[30]. They are independent of initial condition (r(0), p(0)) for ergodic Hamiltonians, and 
further, if there are L independent constants of motion then 2L of the exponents vanish. 
Hence for a cluster system of N particles there will be 3 N -  7 positive Lyapunov 
exponents. From Pesin's theorem [31] the sum of these equals the Kolmogorov entropy, 
which measures the rate of loss of information in a chaotic system. Standard techniques to 
compute the entire spectrum of Lyapunov exponents have been devised, and these can be 
further simplified to get only the largest one, the MLE [32, 33]. If the distance between 
two trajectories at time t = 0 is d(0), and the distance at time t is d(t), then 

A1-- lira lim 1log d(t) 
, ~  d(0)-~0t d(0) (6) 

The actual computation of the MLE uses the above definition, but calculates the rate of 
increase of distance in tangent space [32]. 

3. Phase transitions and Lyapunov exponents 

The behaviour of the MLE at a phase transition was first studied by Butera and Caravati 
[34] who simulated the planar 0(2) Heisenberg model of interacting planar rotors on a 
lattice in 2d as a function of temperature. They noted that the MLE had a distinct bend or 
'knee' at the temperature of the Kosterlitz-Thouless transition. 

In subsequent studies, Posch and Hoover [35] studied Lyapunov spectra for 
monoatomic system in two and three spatial dimensions, both solid and liquid states 
using a repulisive potential. Their results show that the partial spectrum of positive 
Lyapunov exponents, An, are well approximated by a power law An = an ~ with/3 ~ ½ for 
solid-like states and fl ,~ 1 for the liquidlike states. Hinde et al [36] examined the entire 
Lyapunov exponent spectra in 7 atom rare-gas cluster and observed the linear dependence 
of An with distinct slopes in solidlike and liquidlike states. 

The idea that the MLE could be an indicator of phase changes was further investigated 
by Nayak et al [37], who examined the melting of rare-gas clusters by using classical 
molecular dynamics techniques. Simulations of atomic clusters, using the Lennard-Jones 
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pair potential for cluster sizes of 7, 13 and 55 showed that the MLE has a characteristic 
dependence at the temperature of the solid-liquid melting transition. 

Studies of finite clusters have explored this transition for several years, and the usual 
manner in which melting is detected is by computing the Lindemann index, namely the 
average rms fluctuation of the atoms about their equilibrium positions, 

2 , / (r2i)-  (r,j) 2 
5-" - -  , (7) 

N ( N -  1) ~ rij 

i indexing the various atoms, rij the interparticle distances and ( ) implying an average 
over a MD trajectory. The Lindemann criterion [38, 39] for bulk melting is that 6 is larger 
than 0.1, and  has its origin in empirical observations on the characteristic distances 
between atoms, as estimated from the amplitude of vibrations, which is greater in the 
liquid state as compared to the solid. This criterion is used even for the study of small 
systems and is known to correlate well with other indicators of melting such as 
diffusivity. 

A striking result of the dynamical studies [37] was that the change in the largest 
Lyapunov exponent occurs at the same total energy when 6 ~ 0.1, namely, when the 
Lindemann criterion for melting was satisfied. At melting, the cluster goes from fairly 
rigid to nonrigid configurations, and is hence able to access a larger volume of the phase 
space. As a result, larger nonlinearities become important and the motion becomes 
globally chaotic. Thus the MLE, which is either zero (or small) for energies below the 
transition temperature, increases significantly at the transition (figure 1). For clusters such 
as Arl3, the change in the MLE at the melting transition is large, whereas in smaller 
clusters such as Ar7, there is only a discontinuity in the slope as the energy increases. In 
even smaller clusters such as Ar3, the MLE increases uniformly with temperature, and 
there is no explicit signature of a phase transition (Ar7 is the smallest cluster that can be 
considered to show any evidence of a change in "phase" with temperature [40]). 
Comparison with previously published results [18, 41, 42] for various cluster sizes shows 
that the behaviour of the MLE with energy or temperature closely parallels the behaviour 
of the Lindemann index. 

The magnitude of the MLE may be correlated with the volume of phase space available 
to the system, which also increases significantly at a phase transition. Such increase of 
phase-space volume apparently accelerates the divergence of nearby trajectories, and this 
appears to be a generic feature of nonlinear systems. Since the sum of positive Lyapunov 
exponents is the Kolmogorov entropy, it is not surprising that the MLE should reflect the 
large increase in entropy at a phase transition. This connection has been explored to some 
extent-see e.g. refs. [34, 40, 43]. One also therefore expects that the energy density of 
states should increase sharply at approximately the energy at which the isoergic MD 
simulations show a sharp rise in the Lyapunov exponent. This has indeed been noted 
earlier [44], as an increase in the configurational density of states in the cluster solid- 
liquid coexistence regime, which in turn is reflected in a bimodal character of PE 
distributions obtained from canonical Monte Carlo simulations for the phase coexistence 
temperatures. (The density of states can be constructed from constant temperature 
canonical ensemble simulations using multiple histogram method; see [37] for details.) 
Although the discussion above is in terms of the internal energy of the clusters, similar 
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Figure 1. Variation of the largest Lyapunov exponent, AI, with internal energy (units 
are ¢ per atom) for Lennard-Jones clusters of various sizes. The dependence of MLE 
on the temperature also shows similar behavior. 
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Figure 2. (a) Variation of Lindemann index with energy per particle (in reduced 
units) for Guptau clusters for N = 6,7, 13. (b) Variation of maximal Lyapunov 
exponent with energy per particle (in reduced units) for Guptau clusters for 
N = 6, 7, 13. 

observations and conclusions hold if one considers the behaviour of the MLE as a 
function of the average kinetic energy or temperature. 

At the melting transition, both the Lindemann index and the Lyapunov exponent give 
identical information about the change in phase of the cluster. At other transitions, when a 
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'phase transition' is not as well defined, it is often difficult to find a reliable indicator of 
phase change. Take, for example, the putative glass-like transition that has been seen in 
small clusters, an example of which is provided by Arl9 [22]. The global behavior of the 
MLE has been examined [45] as a function of average kinetic energy or temperature for 
Ar19, starting from different configurations corresponding to the global minimum, local 
minima and saddles in the potential energy hypersurface. The radial function which is 
commonly used in bulk studies proves unreliable in detecting phase change, while the 
MLE can be shown to characterise the instability in a precise manner, both in bulk 
materials as well as in finite clusters [45]. 

The generality (and perhaps universality) of these observations needs to be investigated 
in detail. Mehra and Ramaswamy [46] have studied melting in transition-metal clusters 
using the Gupta potential. In these systems there is no regime of solid-liquid coexistence, 
but there can be a fluctuating state where the cluster continuously moves between two 
structures with zero diffusion coefficient. Simulations of 6, 7, and 13 atom clusters have 
shown parallel behavior: no discontinuities were observed in the NILE, but a marked 
discontinuity in the slope near Tm was noted (figure 2). 

In other recent work on the dynamics at phase transitions, Bonasera et al [47] have 
reported CMD simulations near the critical point for the liquid-gas transition. They study 
a system of 100 nucleons interacting through a pairwise Yukawa potential, as well as a 
liquid helium droplet containing about 800 He 4 atoms interacting via the Slater- 
Kirkwood potential and claim that the MLE has a peak at Tc and can be fitted near the 
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Figure 3. (a) Probability distribution of the maximal Lyapunov exponent for Ar3. 
The two different symbols correspond to two different initial conditions. The 
distributions differ markedly and is a signature of non-ergodicity at low temperatures. 
See the text for details. (b) Probability distribution of MLE for Ar 3 for two different 
initial conditions at E =-0.156 x 10-13 erg/atom, T = 32.3K. The distributions 
collapse on each other indicating that the system has attained ergodicity. 

critical temperature with a power law 

with exponent ~c -- 0.15 (in both the systems). It is not clear if this observation is on solid 
ground since, as has been pointed out by Nayak et al [47], the numerical fit to data is 
rather poor and the error bars in the data itself is unacceptably large. At continuous phase 
transitions though, the MLE shows characteristic and distinctive behaviour. Apart from 
the study of Butera and Caravati, there is recent work by Yamaguchi [10] who has studied 
a globally coupled Hamiltonian lattice which undergoes a continuous phase transition as 
energy per particle is increased. There is apparently a peak in the MLE at Tc although the 
model is integrable both in zero-energy and high-energy limits. It appears that at 
continuous phase transitions the Lyapunov exponent has a maximum value, while for 
first-order transitions MLE typically displays a sigmoidal curve. Welding these disparate 
observations into a coherent whole and giving a satisfactory explanation of the 
phenomena is currently a major theoretical challenge. 

The general features of the behaviour of the MLE at phase transitions can be verified 
by studying simpler systems where the same behaviour occurs. Simple dissipative 
dynamical systems show so-called 'crises' [48], where the phase space volume changes 
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discontinuously with the change in a system parameter. Crises (which also occur in 
conservative systems [49]) can be of several types. For attractor widening crises [50] 
where the volume increases by an order of magnitude or more, the MLE changes abruptly 
at the crisis point, increasing as a power law. For attractor merging crises when the phase 
space volume doubles, the variation of the MLE with parameter is "knee"-like, i.e. there 
is a change in the slope of the MLE. Interestingly, both these behaviours have been seen 
in the case of phase change in finite system (c.f. the cases of Ar13 and ART), as well as in 
phase transitions in other systems. 

Calculations of entire spectrum of Lyapunov exponents have also been made [36, 
46, 51]. For the study of complex systems this is indeed important, but calculating them 
through the standard methods such as the tangent space technique can be computationally 
intensive. New methods proposed [52, 53] can circumvent this bottleneck. Lyapunov 
spectra characterize the short-time behaviour of correlation functions, and are related to 
the entire set of relaxation times in the system [54] although this has been established 
only for simple low-dimensional systems. For high-dimensional systems, in the limit 
N ~ c~, the existence of a smooth distribution An, n = i , . . . ,  N has been numerically 
verified [55]. In the highly chaotic regime the function An is linear [56], and this has been 
verified for Ar clusters (see figure 3(a)). In other systems, such as metallic clusters (using 
the Gupta potential) the results differ: the Lyapunov spectra for 6, 7 and 13 particle metal 
clusters have been calculated, and An is found to be a nonlinear function of n [50] 
(figure 3(b)). The behaviour of Lyapunov spectra at phase transitions needs to be 
investigated. 

4. Local K-entropy and local Lyapunov exponents 

Global dynamical indicators are useful, but they are also somewhat limited in that they do 
not provide details about local dynamics--whether motion within a particular region is 
more or less chaotic. They also do not give any indication of the time-dependence of 
phenomena such as the spread of ergodicity. This information is provided by local 
indicators of the dynamics, namely the short time distributions of the K-entropy and the 
Lyapunov exponent. Berry and coworkers, in a series of papers [11, 36, 57], related the 
local K-entropy information to the topology of the cluster potential energy surface (PES). 
The local K-entropy is finite-time analogue of the global entropy, and is obtained by 
dividing a long trajectory into several parts of duration NAt and calculating the entropy 
for each time segment separately. From this the probability distribution of entropies is 
obtained, which can then be compared with the distribution of potential energy averaged 
over same duration NAt. 

A direct way to characterize the structure of a PES is to catalogue its various minima 
and saddles through steepest gradient and quenching techniques. This can be done for 
small clusters but as the number of minima and saddles increases exponentially with size, 
it is a formidable task to list all of these. The geometric features of a saddle can be 
determined by calculating the average curvature from the eigenvalues of the 
instantaneous Hessian matrix, namely the instantaneous normal mode spectra [24]. The 
analysis of clusters in saddle regions is important in understanding phenomena such as 
isomerization and solid-liquid transition. 
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Figure 4. (a) Lyapunov spectra for Ar13 at three temperatures (1) 24 K (solid phase), 
(2) 34 K (coexistance phase) and (3) 40 K (liquid phase). (b) Lyapunov spectra for 
Gupta]3 at reduced temperatures (1) T* = 0.009 (solid) and (2) T* = 0.032 (liquid). 
Only the 32 positive exponents are shown. 

In Ar3 and Ar  4 clusters, which have rather flat saddles, the local K-entropy was found 
[11, 36, 57] to be significantly smaller in the saddle region as compared to other regions 
of the PES. This was attributed to an increase in the degree of quasiperiodicity near the 
saddle arising from a partial decoupling of the cluster's vibrational modes (as measured 
by the total vibrational coupling). In Ar5 on the other hand, the local K-entropy in saddle 
regions was comparable to that in the well while for Ar 6 and ArT saddle entropy was 
intermediate between entropies of the two wells which are connected by that saddle. All 
these clusters have relatively steep saddles, which suggests that the 'regularizing' effect 
of a saddle depends on the shape of PES near the saddle, especially the flatness of the 
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saddle along the isomerization or reaction path. This behaviour is size-dependent: in 
larger clusters the influence of a particular saddle is reduced as the system will not spend 
much time on a sharp saddle. 

In systems where the topography of the potential energy surface is very complicated, 
ergodicity cannot be guaranteed at all energies or temperatures. This can be seen by 
examining the distribution of f'mite-time or local Lyapunov exponents which are defined 
in the same manner as the local K-entropy, by dividing a long trajectory into segments of 
length N6t. Amitrano and Berry [57, 58] calculated the probability distribution of the 
largest local Lyapunov exponent for Ar3 at different values of energy for various time 
intervals, and related these distributions to the evolution of ergodicity. At low energies 
(T = 18 K) in the argon trimer, the shape of the distribution depends on the initial 
conditions for any time interval: the system does not exhibit ergodicity even on long time 
scales. At intermediate energies (T = 28 K) the system is found to be ergodic: different 
initial conditions gave similar unimodal distributions but with different second moments. 
At energies high enough to allow saddle crossing (T = 31 K) the distributions are 
bimodal up to a particular time interval, and unimodal for longer times, showing a time 
scale separation between the intra-well and inter-well motions. At still higher energy 
(T = 37 K) one has true ergodic behavior with unimodal distributions even for shortest 
trajectory segments. Figure 3(a) is the probability distribution of MLE for Ar3 at 
E = - 0 . 1 5 6  × 10 -13 erg/atom, T = 7.41~K for two different initial conditions, the 
trajectories being of l0 s MD time steps. The distributions shows no sign of convergence, 
indicating the non-ergodic nature of the system at that temperature. In contrast, the 
probability distributions of MLE at a higher energy E = -0.089 x 10 -13 erg/atom, 
T = 32.3 K (see figure 3(b)) for two different initial conditions collapse on each other 
indicatiag the system has attained ergodic behavior. These observations at the 
microscopic level are significant particularly in the context of transition from non- 
ergodic to ergodic behavior in small finite systems. Similarly, at T = 14K the 
autocorrelation function of the local Lyapunov function is oscillatory, while it rapidly 
decays to zero for T > 18 K. Qualitatively similar results hold forArT. A general theory 
of these phenomena has not yet been given, and it is not a simple matter to extend these 
calculations to larger cluster sizes. 

5. Discussion and summary 

Finite cluster systems may provide one regime where the methods of dynamical systems 
and statistical mechanics can simultaneously be applied. Given the highly nonlinear 
character of the typical cluster dynamical system, it is not surprising that chaotic motion 
is both so widespread and that it plays such an important role. For small clusters, although 
the number of freedoms is not too large, it is possible to focus on particular features of 
interest--such as the K-entropy or the Lyapunov exponents--and explore the dynamics 
of how statistical behaviour such as ergodicity develops in such systems. 

There are, however, dynamical regimes of interest when the motion of clusters 
becomes simple. For example, at very low energies above the global minimum, the 
cluster, like many hamiltonian systems, can be expected to be nearly integrable. In a 
recent study of Arl3 clusters, Salian et al [59] examined the dynamics of collective 
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excitations by exciting the monopole mode, namely that mode of oscillation where the 
particles execute radial motion only, as a function of temperature. Below a threshold, 
which they determined to be Ts -- 7.2 K, this mode does not decay for long times. Above 
Ts, the time dependence of the amplitude variation could be accurately modeled by a 
damped harmonic oscillator, while below Ts, the monopole mode is periodic or 
quasiperiodic. This suggests [59] that as long as the cluster is confined to the global 
minimum in the PES, the monopole mode does not decay. When the temperature is high 
enough for the system to come out of this well, the nearby local minima, which 
correspond to rearrangement of one or a few particles act as decay channels, akin to 
single-particle excitations in nuclei [60]. The MLE in this temperature range has also 
been studied [61]: below Ts, the MLE is essentially zero, and although in the so-called 
'solid' state, the MLE becomes positive only above Ts. Thus the survival of the symmetric 
monopole mode is intimately connected to the onset of globally chaotic motions in the 
dynamics. 

A major focus of this article has been on the appropriateness of using the Lyapunov 
exponents as indicators of phase change since this focuses on a property of the phase 
space behaviour of the system. The dynamics of the solid-liquid melting transition, the 
liquid-gas transition, and the glass transition in finite systems have been studied using this 
quantity. For phase transitions where order parameters based on other criteria can be 
ambiguous (as for example the glass transition), the MLE may be able to provide the 
clearest signature of the transition. 
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