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Abstract. Quantum motion of a single particle over a finite one-dimensional spatial domain is 
considered for the generalized four parameter infinity of boundary conditions (GBC) of Carreau 
et al [1]. The boundary conditions permit complex eigenfunctions with nonzero current for 
discrete states. Explicit expressions are obtained for the eigenvalues and eigenfunctions. It is 
shown that these states go over to plane waves in the limit of the spatial domain becoming very 
large. Dissipation is introduced through SchrSdinger-Langevin (SL) equation. The space and 
time parts of the SL equation are separated and the time part is solved exactly. The space part is 
converted to nonlinear ordinary differential equation. This is solved perturbatively consistent 
with the GBC. Various special cases are considered for illustrative purposes. 
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1. Introduction 

Recently Carreau et al [1] has shown that a four parameter infinity of generalized 
boundary conditions (GBC) exist for the case of a free motion in one dimension over 
a finite spatial domain. These boundary conditions admit complex wave functions with 
nonzero current as eigenstates. Such states can find a natural application in many 
physical problems such as motion of an electron confined in a quantum well or 
quantum tunneling across a Josephson junction. In most such practical cases dissi- 
pation plays an important role. There are two types of approaches to study quantum 
dissipative systems. In one approach the central system of interest is coupled to extra 
degrees of freedom and although the total system remains conservative, elimination of 
the extra degrees of freedom in an appropriate approximation makes the central system 
dissipative [2, 3]. In the other approach phenomenological quantum equations dis- 
playing dissipative behaviour are used. In this category comes the well known 
SchrSdinger-Langevin (SL) equation [4], Gisin equation [5] and the use of complex 
potential [6]. We report the free particle eigenspectrum explicitly using the GBC and 
show how the discrete states go over to the plane waves as the spatial domain size 
increases indefinitely. We introduce dissipation through the SL equation and separate 
its time and space parts. The time part is solved exactly and the space part is reduced to 
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a nonlinear ordinary differential equation. A special solution of this equation is 
obtained and the problems of applying GBC are pointed out. A perturbative scheme for 
solving the space part consistent with the GBC is developed. 

2. Particle in a 1-dimensional box with GBC 

Consider a nonrelativistic particle of mass m confined to a spatial domain 0 < x < L. 
The commonly used boundary conditions on the wave function are 

O(0) = 0 = O(L). (2.1) 

A more general class of boundary conditions are [1, 7] 

(o) j = L J' 
where the prime denotes differentiation with respect to x and M is a 2 x 2 Hermitean 
matrix 

M = [  aot - i3 ct + i 3 ] b  " (2.3) 

a, b, ~ and 6 are the four real parameters. Using (2.2) it readily follows that the energy 
eigenvalues are given by 

h2k 2 
Ek-- 2 m '  (2.4) 

with k satisfying the dispersion relation 

2k~t + (a + b)kcos(kL) + [ab - ot 2 - (52 - -  k2]sin(kL) = 0. (2.5) 

The corresponding wave function is given by 

~kk(X ) = A [sin(kx) + Ccos(kx) ] (2.6) 
with 

[k - (a - i~)sin(kL)] 
C = [b + (~ - i6)cos(kL)] (2.7) 

and the constant A is obtained from normalization. 
The state (2.6) has a nonzero current 

(hkm ) [kcos(kL) + bsin(kL)] 
JR = I A 12 3 { [b + ecos(kL)] 2 + 32cos2(kL)}" (2.8) 

The usual boundary conditions (2.1) are special cases of (2.2) when 

a ~ o o ,  b--,oo, c t~0,  ~-~0. (2.9) 

It is interesting to consider the large L limit. For usual boundary conditions the states 
remain discrete and the current zero. Physically, this can be attributed to the fact that 
any eigenstate is an equal weight linear combination of plane waves moving from left to 
right and vice versa. Unless an imbalance is introduced in these waves, nonzero current 
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is not possible. GBC introduces such an imbalance and it is readily shown that 

1 ~2L[k-(ot-ib)sin(kx)]dx 
lim C = L  "L,I [b+(a-i6)cos(kx)] --' +i (2.10) 

L- '*~  

so that the wave function (2.6) goes over to exp(+_ ikx). 

3. Schriidinger-Langevin equation: t-dependence 

We now consider dissipative motion over the domain 0 < x < L, 0 < t < oo for the free 
particle using the SL equation 

ihO~k/Ot = - ~-mmO2d//Ox 2 + ln[d//@*]~k, (3.1) 

where 2 is the dissipation coefficient. The space and time parts of the wave function can 
be separated by putting 

~(x, t) = dp(x)z(t). (3.2) 

Z(t) and ~b(x) then satisfy 

)`h 
ihdx/dt = ~-~ln [Z/X*]XI+ W~ (3.3) 

and 
2 h 

~ d2c~/dx2 + ~ln[~/~*]c~ = W~. (3.4) 

Wis the separation constant and in general it can be complex. We first consider the time 
part (3.3) which can be readily integrated to give the solution 

X(t) = exp(Wit/h ). e x p [ -  iGR(t)/h], (3.5) 

were W~ is the imaginary part of W and the real function G R satisfies the differential 
equation 

dGR/dt + 2G R = W R, (3.6) 

W R being the real part of the separation constant 144. 
Thus when W~ > 0 (2.5) blows up with time t and when W l < 0 it decays to zero. The 

first case is evidently unphysical and the second is a well known difficulty with quantum 
dissipative systems I-3, 6]. A special solution exists for the spatial part when W~ has 
a particular negative value as discussed in the next section. 
The most general solution of (3.6) is given by 

GR(t ) WR [1 -- exp(-- 20] + Goexp ( -  20, (3.7) = 7  
where G O is an arbitrary constant. From (3.5), W~ can be thought of as the imaginary 
part of particle energy and dGR/dt as the instantaneous real energy E(t) of the system 

E(t) = E o e x p ( -  )`t), E 0 = E(t = 0) = W R - Go).. (3.8) 

E(t) decays exponentially with time. 
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4. Schriidinger-Langevin equation: Space part 

The space part satisfies (3.4). A special solution of this equation exists when 

W~ = - 2h/2. (4.1) 

It is given by 

4) = exp[iU(x)/h], U(x) = B 1 + B2x - (mWffh)x 2, 

B 1 ~ + B2,/2m = W R. (4.2) 

However, nonlinearity of SL equation does not permit the use of GBC in any simple 
fashion. We give below a simple perturbative scheme by expanding the separation 
constant W in powers of the dissipation coefficient. Put 

W = W o + qW,  + qz i412 + . . . .  (4.3) 

40 = 40o + q401 + qz402 + .... (4.4) 

where the dimensionless expansion parameter ~/is 

tl - 2h /W o, (4.5) 

and the wave functions 4)0,401,402 .... are mutually orthogonal. The linearity of the 
GBC then imply that if all the 40i's satisfy them so would (4.4). The various W i's are in 
general complex. Using (4.3) and (4.4) in (3.4) and comparing equal powers of/7 we get 

(-- h2/2m) d2 40o/dx2 = Wo 400, (4.6) 

( -h2/2m)d2401/dx2+ 2-~1n(40o/40o*)40o = Wo401 + WI 400, (4.7) 

Wo, /40o  Wo[40, 40 ] 
--(h212m)d2402/dx2 + - - ~ m  ~-~o ) 4°1 + -~Z 40~ J 400 

~--- W0402 "3 t- W1401 -+ W240o. (4.8) 

We can solve these equations consecutively. Thus 400 is one of the eigenstates ~, of the 
unperturbed i.e. undamped system and W o the corresponding energy. The first order 
correction due to dissipation is then given by 

q W  1 = (2h/20 J ~40~40od x (4.9) 

and 

with 

40, = ~ Nk@ k (4.10) 
k#q 

N k = - [Eq/2i(E k - Eq)]" S ff*ln(ffq/O~)~,qdx (4.11) 
@[@k dx 

374 Pramana - J. Phys., Vol. 47, No. 5, November 1996 



Finite one-dimensional domain 

For the special case when 

a + b = 0 ,  ct=0, ~ 0  (4.12) 

the unperturbed energy eigenvalues correspond to the usual ones given by 

sin(kL)=0,  cos(kL)= _ 1, k L = n n ,  n =  1,2,3 . . . .  (4.13) 

Thus for ¢o corresponding to k = q, the first order correction to the energy becomes 

nW~=h;~fp20(x)dx/fpZdx, (4.14) 

where 
p2 = q2c°s2(q x) -I- (b 2 + 62)sinZ(qx) + 2bqsin(qx)cos(qx) 

(b 2 + ~2) (4.15) 

and 
6qcos(qx) 

tan(O) -- _+ (b 2 + 62)sin(qx) + bqcos(qx)" (4.16) 

The upper (lower) sign corresponds to cos(qL)= 1 [cos(qL)-- - 1]. From (4.14) it is 
clear that dissipation acts in opposite directions for alternate states, one state is reduced 
in energy or pushed down and the other state is pulled up. Further simplification occurs 
when the parameter b is set equal to zero. Putting x = L/2 + y it is seen that the 
integrand is an odd function of y and the integral vanishes. Thus in this special case 
dissipation does not affect the energy eigenvalues to first order. 

5. Results and concluding remarks  

We put the dispersion relation (2.5) in dimensionless form by measuring all distances in 
units of Bohr radius a 0 and the wave vectors in the units of l/a0, so also the parameters 
a, b, a and 6 in the GBC. The energy E k then becomes k 2 in Rydberg with k dimension- 
less for m, the electronic mass. The dependence of the eigenvalues on the size of the box, 
L, can be absorbed into the changed values of the parameters a, b, a, 6 as shown. 
Multiply (2.5) by L 2 and define 

q = kL, ~' = aL, ~' = ¢3L, a' = aL, b' = bL 

to cast the equation in the L independent form as 

2qct' + (a' + b')qcosq + [a'b' - ~,2 _ c5,2 _ q2] sin q = 0. (5.1) 

Roots of this equation correspond to k values for parameters • = ct'/L etc. The large 
k eigenvalues are readily seen to be the usual ones corresponding to 

s i n q = 0  or q = n n ,  k = n n / L ,  n = 1 , 2 , 3 , . . . ,  (5.2) 

where large k is defined by 

k >> M, I~1, lal, Ibl. (5.3) 

When ~ = 0, a + b = 0 we again have (5.2). 
Another special case of interest occurs when 

a + b = 2~. (5.4) 
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Table 1. Ten lowest roots of the eigenvalue equation (2.5) for some values of 
the parameters a, b, c~, 8. [The values given are in dimensionless form as explained 
in § 5] 

Parameters for L = 10 Roots(kL/n) 

a = b = c~ = 0"001, 1 2 3 4 5 6 7 8 9 10 
8 = 1  

a = b = c~ = fi = 1 1 2.49 3 4.48 5 6.43 7 8.37 9 10.32 

a =  1.1, b=0.9,  0'99995 2.46 2.94 4.5 4.94 6.45 6.95 8.4 8.96 10.35 
~ = 1 . 2 , 6 = 1  

One  set of  eigenvalues is then given by 

cos(kL/2) = 0 or k = nn/L, n = 1, 3, 5 . . . . .  (5.5) 

cor responding  to odd n values in (5.2). The  other  set ofe igenvalues  is ob ta ined  f rom the 
solutions of  

k L 2kc~ 
t an-~-  = ~z + 62 + k z _ ab (5.6) 

and in general these values are shifted f rom the even n values of  (5.2). Some numerical  
solutions of  the eigenvalue equat ion  (5.6) are given in table 1. I t  is seen tha t  when a, b, ~, . 
6 shift f rom unity the odd n roots  are lowered and even n values are raised thus leading 
to an apparen t  pair ing of the roots. 

The dispersion coefficient 2 has dimensions of 1/t. For  the perturbative formulation 
to be applicable 1/2 should be substantially larger than the natural  time scale of  the 
problem which can be the time. taken by the particle to travel from 0 to L. We thus get 
the condition 

I L 
- > (5 .7 )  
2 [(hq/m)Im(C)]" 

F o r  the simple case of  G B C  p a r a m e t e r  values (4.12), this reduces to 

2E~6 
,~h < (5 .8 )  

[L(b 2 + 62)] . 

Thus  the dissipation effects would be more  impor t an t  for low lying energy levels. 
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