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1. Introduction 

Since the development of the hyperspherical harmonics expansion (HHE) method 
[1-5] in the early seventies, it has been applied profitably for the determination of the 
bound state properties of a few nucleon systems [1-6]  as well as light atomic and 
molecular systems [8]. In this method, the wave-function is expanded in an infinite 
series of generalized partial waves and the Schr6dinger equation gives rise to an 
infinite set of coupled differential equations (CDE). Although the size of the expansion 
basis can be reduced by the introduction of the optimal subset [5], the sum over the 
hyperangular momentum quantum number (K) must be truncated in order to get 
a finite set of CDE, to be numerically tractable. Convergence of the expansion is slow, 
unless the potential is very soft. The usual criterion for the truncation of the expansion 
basis with respect to K is the attainment of convergence in binding energy (BE) up to 
a predetermined limit. This however does not guarantee an attainment of convergence 
in the asymptotic part of the wave-function and thus the wave-function (particularly 
the asymptotic part of it) is less reliable than the BE. 

The HHE method is also not easily adoptable when the interaction potential is 
dependent on the state of the interacting particles, as in realistic nucleon nucleon (NN) 
potentials. This is the reason why the HHE method has so far been applied to nuclear 
problems with simple S-projected, relatively soft potentials only. Moreover such 
potentials are usually chosen to be a sum of Gaussians or exponentials, which 
although are convenient for a fast convergence, but still do not have the necessary one 
pion exchange tail. Hence the asymptotic part of the wave-function as determined by 
the asymptotic normalization constants, is not reliable [7] and cannot be compared 
with calculations by other methods or with experimental numbers. Nevertheless the 
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HHE method is interesting since it deals directly with the wave-functions and hence 
provides a clear physical picture. 

The other and perhaps the most frequently used essentially exact technique to 
solve the three body problem is the Faddeev equation method [9]. In this approach, 
for a given partition of the three body system, the angular momentum quantum 
numbers of the interacting pair and those of the spectator particle specify the 
characteristics of each channel, for which Faddeev equations are written separately. 
This approach is particularly suited to realistic NN potentials. On the other 
hand inclusion of a long range interaction like the Coulomb potential, involving 
a large number of partial waves, is inconvenient in traditional momentum space 
Faddeev calculations. However, this problem does not arise in coordina'~e space 
Faddeev calculation, for which sophisticated numerical techniques have been devel- 
oped [12,1. One of the most commonly employed realistic NN potentials 
is the Reid soft core [10] (RSC) potential, which depends on the spin (s), isospin 
(t) and total angular momentum (j) of the interacting pair and thus the Faddeev 
equation method is suitable to deal with such an interaction. On the other hand, 
the calculation of matrix elements of this potential necessary for the HHE method 
becomes extremely complicated. For this reason, while there is an abundance of 
Faddeev calculation with the R SC potential [ 11-13-1, no attempt has so far been made 
to find the complete solution of the trinucleon system by the HHE method with this 
potential, although several works have been reported with simple potentials [1-6]. 

As has already been mentioned, the reliability of the asymptotic wave-function 
obtained by the HHE method has not been established. On the other hand, the 
asymptotic wave-function strongly depends on the correctness of the asymptotic 
part of the NN interaction chosen. To throw light on the convergence and correct 
behaviour of the asymptotic wave-function obtained by HHE method, it is necessary 
to solve the trinucleon system by this method with a realistic potential, having 
appropriate asymptotic behaviour. We have chosen the RSC potential for this pur- 
pose, for which Faddeev results are available for comparison. As a first step towards 
this goal, we have calculated in the present work the binding energy of 
triton using RSC potential by the HHE method. Mukhtarova [14] performed accu- 
rate HHE calculations with some of the realistic NN potentials like GPT [15], SSC 
[16-1, TRS [17] potentials etc, but RSC was not used by her. To the best of 
our knowledge, this is the first calculation of the trinucleon system by the 
HHE method using RSC potential. Adiabatic approximation has been used to 
approximately decouple the resulting equations. Convergence behaviour of the bind- 
ing energy in the extreme and uncoupled adiabatic approximation (EAA and UAA 
respectively) have been studied. For the best computer facility available, we 
have been able to retain up to a maximum K value of 15 for each symmetry 
component, which gives the EAA and UAA binding energy to within about 
1"3~o. Following a theorem on the convergence of hyperspherical harmonics expan- 
sion by Schneider [18-1, a semiempirical extrapolation formula has been obtained for 
the missing binding energy. These results together with the probabilities of S, S' and 
D states have been compared with the earlier calculation by Faddeev method. 

This paper is organized as follows. Section 2 contains a brief review of the HHE 
theory and its adoption to the RSC potential. In § 3, we present the results obtained 
and discuss the convergence behaviour. Conclusions have been drawn in § 4. Appen- 
dix A is provided for the coupling matrix elements. For clarity of our discussion the 
various components of the RSC potential are presented in Appendix B. 
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2. The theory 

This section is divided into two subsections: in the first the coupled differential 
equations (CDE) are set up for realistic potentials and in the second the coupling 
matrices for the RSC potential are developed. 

A. Coupled differential equations 

The relative mot ion of trinucleon system is described in terms of the Jacobi co- 
ordinates 

x = r  2 - - r  l 

y = 2/x/3 [r 3 -- (r 1 + r 2 )/2], (1) 

where r i is the position of the ith nucleon. The hyperradius r, defined through 

r 2 = X 2 + y2, (2) 

is invariant under exchange of any pair of nucleons and three dimensional rotations. 
The hyperangular  set {f~} describing the five other space degrees of freedom is 
consti tuted by four spherical polar angles ~(Ox, ckx) and 9(0y, ~br) giving the orienta- 
tions of x and y and one hyperspherical angle ~b defined in terms of relative lengths of 
x and y by 

tan 4~ = y/x, 0 ~< ~b ~< 7t/2. (3) 

The wave-function is expanded in a complete or thonormal  set of hyperspherical 
harmonics [5] as 

TMr I~JMa (r~ '~)  E n( /~)r -  5/2 e,T,S e , Ms = Uzx+L(r)[ B2r+L(f~) ® Frs(e )Is (4) 
K,e,T,B 

where T, S and L correspond to total isospin, spin and orbital angular momentum 
respectively and J = L + S is the total angular momentum; e specifies the symmetry of 
the spatial part of the wave-function under exchange of particles, which can be the 
totally-symmetric S, mixed symmetry S'*,S'- and D + ,D-  states; the + or - signs 
correspond to symmetry or antisymmetry under the exchange of (12) pair of particles. 
The spectroscopic notations S and D correspond to L = 0 and L = 2 respectively, 
L being the total angular momentum. The factor n(e) is defined as 

n(e) = 1 for S state 

= l/V/2 for S '÷, D + and D-  states 

= -- l / v /2  for S'- state. 

Frs(e* ) is the isospin-spin state of three nucleon system with total isospin T and total 
spin S and having a symmetry conjugate to e, such that [~Bzr+L(F2)® F rs ( e * ) ]y  J is 
totally antisymmetric. It is given by 

Frs(e*) = ~ bt~(e*)l (s 1/2) SM s ) I(t 1/2) T M r ) ,  
s,l 

(5) 
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t , where s and t represent spin and isospin of the interacting pair and b~(e ) are coefficients 

determined by the symmetry requirement. An element of the appropriate optimal 
subset of hyperspherical harmonics is ~B2r+L(r ) (its explicit form is given in ref. [5]) 
and [~Ber + L ® Frs(e*)]~ represents coupling of L and S to a total angular momentum 
J with z-component Mj  (for the trinucleon J = 1/2). The RSC potential depends on 
the angular momentum (j,), spin(s) and isospin (t) of the interacting pair and the Jl 
value (j, = la + s) is restricted toja ~< 2 (Appendix B). Thus it is convenient to express 
the spin-isospin hyperangular part of the wave-function, in (j -- j)  coupling scheme: 

[~B2x + 1- ® r ' rs ( : ) ]~ '  

= eN2K+I " ~ bt~(e*)[(t 1/2) TMr>[(211 + 1)(2/2 + 1)/(2L+ 1)3 x/2 
$,f 

[/d,[t2] 

L0) F2g +L(tp) 

-2K+L~'/ ~ 1/2 I(lls)jl,(lel/2)j2;JMs) (6) 
[Jt][J2] L J* J2 

where [Jl ], [/~], etc represent restricted values as required from RSC potential. The 
normalization constant tN2K+L is given by 

[ [,1, 012 t N 2 . - -  ~(211+l) lF2r+L(tp)[  x0 -5x  1+  ~ 1 1/2 1/2 , 
[/d U,]U2] j ,  J2 1/2 

(7) 

for the S and S' states and 

N2t~+ 2 = ~ (211 + 1)(212 + 1) 
[11][12] 

[/11 12 2 J 2 
x E 1/2 3/2 

u~ltJ21 L J* J2 1/2 

for the D state. The quantity ~2.~1 ¢,.~ is given by - - 2 K  + L ~k'! 

11 12"~ 2 el~12,ll (*t~] 2 

0 0 J  -2r+L~', 

(8) 

e1712,ll (m~ 

where (2)P~l].L(t~) is a hyperspherical function and Z~ acts on a funct ionf(q)  as: 

(9) 

~ f ( c p )  = 1/3 [ f ( 0 )  + f ( 2 n / 3 )  + f ( - -  2~/3) ] ,  
0 

(10a) 

~ f ( q ~ )  = 1/3 [2 f (0)  - f ( 2 ~ / 3 )  -- f ( -  2n/3)] ,  
+ 

(10b) 

~f( tp)  = 1 /x /~[ f  ( -  2rc/3) -- f(27z/3)]. (10c) 
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Substitution of (4) in the Schr6dinger equation and projection on a particular hyper- 
spherical harmonics leads to a system of coupled differential equations 

h2 V d z ( 2 K +  L + 2 )  2 -  1/4 ] _  E]u~2rSL(r ) [- ~Ldr: r ~ 

"Jr- Z {"KeTSL {_~ ~,~" T'S' t'_X ~K,e,T,S,L,~rJU2K, + L,~r} ~ O~ 
K'e'T'S'L' 

(11) 

where m is the nucleon mass, K represents the hyperangular momentum quantum 
number and r.r~TSL t.~ is the coupling matrix elements explained in the next ~K'e '  T'S'L" ~,'! 
subsection. 

B. Couplin9 of the interaction 

The coupling matrix in (10) is given by 

CI(,eTSL t-~ :~:  [e' B 2K, + L @ F T,s,(,~'*) ] f  ~° £[~B2r +L ® Frs(e*)]~ I~ V(r U) K,e,T,S,L,~rj = 

(12) 

where V(rij ) is the interaction potential of the (ij) pair. Detailed expressions for the 
coupling matrices for all possible combinations of RSC potential are already cal- 
culated [19]. The coupling between two states through central, L-S or tensor part can 
be obtained by using 

((lls)J,,(/2 1/2)j2; JMsJ V~ + VLsL'S + VrS,21(/', s')j',,(l 2 1/2)j2; J M s )  

= 61j,26jri,2161,1,16j,j; 6ss, { Vc(rij ) + 1/2{jl(j1 + 1) -- 1~(11 + 1) -- s(s + 1)} x/2 

x VLs(rii)} + 6ss, fy,,j,((lls)j 11S~2[(l'lS)j I ) VT(r,i)] (13) 

where Vc(rij ), VLs(ris ) and Vr(ris) represent the radial dependences of central, L ' S  and 
tensor components of RSC potential (Appendix B). The matrix elements of the tensor 
operator $12 can be found in standard texts [20]. 

The possible component of RSC giving rise to coupling between (SS), (S'S), (S'S'), 
(DS), (DS') and (DD) are given in table 1. Complete expressions for matrix elements of 
these blocks are given in Appendix A. 

A typical term in the matrix element (t 2) contains (see Appendix A) an integral of 
the interaction potential and two t2~p[~.z, functions [5], 

(2)p12,1, [ V(rcos ~b)l~2)P{~k!~ + L), (note that r12 =--x = rcos ~b). Expressing t h e  t2)p~, l ,  
- - 2 K + L  I 

function in terms of Jacobi polynomials, this can be seen to be proportional to 

/ . . , ( r )  = P~."P~(x) V(r,~)e~.;"#'~(x)(1 - x) ' (1  + x : d x  (14) 
- 1  

where P~,"#) is a Jacobi polynomial and e =  l 1 + 1/2, f l=  l 2 + 1/2, 7 = ( ~ + e ' ) / 2 ,  
6 = (fl +/?')/2; n,n' are determined from 2K + L =  2n + l~ + 12 and r12 = r((1 + x)/2) 1/z. 

Since each of the element of the potential matrix contains contributions from 
several terms of the RSC potential (table 1 and Appendix A), a larger number of 
integrals of the type (14) are to be evaluated for each hyperradial mesh point. This 
would require an enormous computer time. The situation becomes more critical due 
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Table 1. Classification of different couplings. 

Couplings Components of RSC potential involved 

SS 

S'S 

S'S' 

DS 

DS' 

DD 

Vc(ISo), Vc.Ls(3S1 -- 391)  , Vc(392) ,  
Vc(ID2) 

Vc(ISo), V C . L s ( 3 S I -  3D1) , Vc(3D2),  
Vc(1D2) 

Vc(1So), VC.Ls(3S1 -- 3D1) , Vc(3D2) ,  
Vc(1D2), Vc(~P1), Vc(3Po), Vc(3PI), 
VC,Ls(3P2 -- 3F2 ) 

VT(3S1 --  3D1) 

VT(3SI --  3D1) , VT(3P2 -- 3F2) 

VC,LS, T(3SI -- 391) ' Vc(3D2),  Vc(3eo) ,  
Vc(3P1) ,  VC,LS,T(3P2 --  3F2) 

V c , VLs and V r correspond to the central, LS and tensor component of 
the RSC potential. 

to a large number of zeros of the integrand in the interval [ -  1, 1] for large K, K' and 
so the numerical evaluation of the integral becomes tricky, requiring too large 
computer time for a specified precision. Instead, we evaluate the integral in (14) by 
expanding V{r[(1 + x)/2] 1/2} (whose typical form is as in (15)) in the complete set 
{p~F 2, 1/2)(x)} 

V(r(1 + x)/2) 1/2 = V o 
exp { --/zr [ (1 + x)/2] x/2 } = 

(1 + x)  p/2 
an.(r)P~.~ "2" 1/2)(x) 

n,,=O 
(15) 

where the potential multipoles an,, is given by 

an,(r) = (1/hX,(z, 1/2) f l  
- 1  

V(r((1 + x)/2)x/2)Pt.X,,/2, a/2)(x)(1 -- xZ)l/2dx, (16) 

hl/2.1/2 being the norm of Jacobi polynomial P~n 1/2" 1/2) Substitution of (15) in (14) n" " • 
gives 

l . . , ( r )=  ~ a.,,(r)(n[n"ln') (17) 
n,,=0 

where the geometrical structure coefficients (GSC) 

(n ln" ln ' )  pt..a~ ] (1/2,1/2) ] ~t',fl') x)6dx = . (x.P.,, (x.P~,, (x)(1 - x)r(1 + 
- i  

(18) 

is independent of the interaction potential as well as the hyperradius r. However 
eq. (17) is not advantageous unless the sum over n" can be restricted. Since p~,m is 
a polynomial of degree n in x, one can see from (18), by isolating one Jacobi 
polynomial together with its appropriate weight function and expressing the remain- 
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ing part of the integrand as a polynomial and using the orthogonality property of 
Jacobi polynomials that (n ln" ln ' )=0 unless n" satisfies nml n ~< n"<<. nmx. Then (17) 
can be rewritten as 

nma~ 

Inn,(r)= ~ an°(r)(nln"ln'). (19) 
n "  = nrfll~ 

The GSC can itself be evaluated 1-21] by using the completeness property of Jacobi 
polynomials and solving a set of linear inhomogeneous equations (LIE). Note that  the 
GSC need to be calculated once only and stored, to be used for each mesh point, 
resulting in an efficient and fast numerical procedure. 

The above procedure will always work, except for the case when after isolating one 
Jacobi polynomial together with its weight function in the integrand of (18), the 
remaining part is not a polynomial. Such a situation can occur only for the tensor part 
of (3S~ - 3D 1) and (3P 2 -- 3F2) interaction components. In this case one can include 
a factor of(1 -- x)-  1/2 with the potential function V(r((1 + x)/2)1/2), so as to make (19) 
valid once again. Although this extra factor introduces a singularity in a,,,(r) (see (15) 
and (16)), it has been shown by us [22], that the principal value of this modified 
potential multipole exists for the cases under consideration and a numerical calcula- 
tion produces sufficiently accurate results. 

3. Resul ts  and discussion 

The ground state of the trinucleon has dominant  contributions from the totally 
symmetric L = 0 state (S), mixed symmetry L = 0 (S') and mixed symmetry L = 2 (D) 
states only. The only other possibility, a P-state, has negligible probability and has 
been disregarded. With a maximum K ( =  Kmax) values of 15 for each of S, S', and 
D states, one has to solve a system of 46 coupled differential equations (CDE). 
Numerical algorithm for solving such a large number of CDE (for example, by 
renormalized Numerov method 1-23]) is very slow and not sufficiently stable. For  this 
reason we have adopted the adiabatic approximation scheme [24] to solve the system 
of CDE. Due to the strong short range repulsion of the RSC potential, the conver- 
gence in binding energy (BE) with respect to inclusion of higher partial waves, is not 
expected to be sufficiently fast. 

We have taken 300 uniform mesh points (of interval size 0-05 fm) for the hyperradial 
variable (r). For  each mesh point the coupling potential matrix is calculated. As 
explained in the previous section, an appropriate multipolar expansion of each 
component  of the RSC potential is made and the corresponding geometrical structure 
coefficients (GSC) are calculated by the LIE method 1,21] and stored (outside the 
r-loop). Then for each r-mesh point, all the potential multipoles are calculated and 
using the stored GSC, the potential matrix is computed. The diagonal hypercentrifu- 
gal part is added to this and then the matrix is diagonalized to obtain the lowest eigen 
potential (wo(r)). All calculations have been done in double precision on an EISA 486 
personal computer. In table 2a we demonstrate the convergence behaviour of Wo(r) for 
a few selected values of r and for various values of K. It can be seen from this table, 
that the convergence of wo(r ) is fairly rapid for small values of r, while it is quite slow 
for large values of r. Since a major part of BE comes from near the minimum of Wo(r ), 
convergence in BE is faster than the asymptotic wave-function. This is clearly seen in 
table 2b where calculated BE for various r e (upper cut off in r) and for a few selected 
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Table 2a. Convergence of minimum eigenvalue ( -  w0(r)) for various values of r. 

r(in ~rmi) 

K 1-8 2'15 2-55 3.05 4.05 7'55 10"05 

8 2 3 - 3 4 4  3 5 - 6 3 9  3 0 - 5 5 0  2 2 - 4 9 4  12-695 0"479 - -  
9 23"459  35"880  30"865  22'739 13"091 1-201 - 0'444 

10 23"505  3 6 - 0 2 8  31"118  22"957  13"138 1"913 -0-189 
I1 2 3 - 5 2 5  36"087  31"258  23"189  13-247 2"739 0"162 
12 23"535  3 6 - 1 0 9  3 1 - 3 3 5  2 3 - 3 3 1  13"384 3"456 0-560 
13 2 3 - 5 3 6  36"116  31'368 23'425 13-497 4"018 1"000 
14 2 3 - 5 3 8  36"119  3 1 - 3 8 3  2 3 - 4 7 9  13-624 4-532 1"544 
15 2 3 - 5 3 9  3 6 - 1 2 2  31-390 2 3 - 5 0 5  13-718 4-617 2"095 

Table 2b. BE in MeV in extreme adiabatic approximation for a few 
K with various r~. 

r (in fm) 

K 9"0 11"0 12"0 13"0 

7 5.5478 5"5409 5"5401 5.5401 
11 7"4581 7-4616 7'4612 7"4610 
13 7.7812 7"7959 7"7963 7"7961 
15 8"0113 8"0174 8"0178 8"0180 

K values have been presented. A choice of 15fm for ro~ appears  to be sufficient for 
reliability up to third decimal place. Figure 1 shows the behaviour of wo(r ) as a function 
of r for Km~ = 15. Using this Wo(r ) and the corresponding eigenvectors, approximately  
decoupled differential equations are obtained by the extreme and uncoupled adiabatic 
approx imat ions  [24] (EAA and UAA respectively). The decoupled equations have 
been solved by the R u n g e - K u t t a  method. Calculated BE by EAA (--  EEAA) and UAA 
(--  EUAA) together with incremental changes, have been presented in table 3. Conver-  
gence to 1-3~ in both E~A A and EVA A have been achieved with Kma x = 15 for each of S, 
S' and D states. 

Calculated probabilit ies of  S, S' and D states (Ps, Ps' and Po respectively) for 
various K values are shown in table 4. F rom this it is seen that  Po increases gradually 
(mostly at the cost of Ps) as K increases, indicating that  the tensor coupling terms, 
having s t rong r dependence in short  separation region, contr ibute  significantly to 
higher partial  waves, thereby enriching the D state. In figures 2 and  3 calculated 
hyperradial  partial  waves are plotted for various K values for S and D states. Since the 
compute r  time and m em ory  requirements increase rapidy with increase of 
Kma x values, we restricted our  calculations to Kin,, ~< 15. However  using the conver- 
gence theorems proved by Schneider [18], i t  is possible to estimate the converged 
energy by calculating the missing energy from a knowledge of the observed conver- 
gence trend for various K values. It was shown by Schneider that  when the two-body 
potential  is a sum of Yukawa terms, the convergence must  be at least as fast as 2-4,  

190 Pramana - J. Phys., Vol. 44, No. 2, February 1995 



Hyperspherical harmonics expansion method 

250. , , 

200. 

150. 

l 100. 

L .  

0 

3 
50. 

0. 

- 50. ' ' 
O. 5. I0. 15. 

F i g u r e  1. Lowest eigen potential, og0(r ) as a function of r for Kma" = 15. 

where 2 = (K(K  + 4)) 1/2. Following 
AEr = [E(K + 3) -- E(K)I and assume 

Ballot et al [25] we define 

AE x = C(K + x)-4, (20) 

where C and x are constants to be determined empirically. In table 5a, AE K has been 
presented for K = 3n (n is integer), which shows that the value of C in (20) is 
approximate ly  constant.  We least square fitted all calculated AE x to the relation (20) 
to obta in  C (24-272 and 24.266 for EAA ani 'd UAA respectively) and x (4.241 and 
4"461 for EAA and UAA respectively). Using this, the estimated values of  EEA A and 
EuA A for K > 15 are presented in table 5b, which shows the convergence is well 
established. Finally using (20) for K >/K M, where K M is sufficiently large, we can 
est imate the converged energy as 

E~ = E(K~t ) + ~ AE(KM + 3n).  ( 2 1 )  
n = O  
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Table 3. BE of triton in MeV with extreme adiabatic approximation 
( -  EEA A) and uncoupled adiabatic approximation ( -  EUA ̂ ). 

K - EEA A -- AEEA A -- EUA A -- AEuA A 

5 2"928 2-204 
1-742 1-582 

6 4"670 3-786 
0-870 0.781 

7 5-540 4"567 
0"830 0-771 

8 6"370 5"338 
0-515 0-476 

9 6"885 5.814 
0"292 0.276 

10 7-177 6-090 
0-283 0-269 

11 7.460 6"359 
0"207 0" 192 

12 7"667 6"551 
0-129 0.123 

13 7-796 6-674 
0-124 0-119 

14 7"920 6"793 
0.098 0.089 

15 8"018 6-882 

Table 4. Values of Ps, Ps, and Po. 

K Ps% Ps, % PD% 

5 91.44 0.73 7.83 
6 90.32 1.01 8.67 
7 89.80 1.13 9.07 
8 89.20 1.16 9.64 
9 88.70 1.21 10-09 

10 88.30 1.26 10.44 
11 88-00 1.24 10.76 
12 87.69 1.25 11.06 
13 87.65 1.21 11.14 
14 87.69 1.18 11.13 
15 87.67 1-16 11.17 

F o r  sufficiently large KM, one can  replace t he  sum by an  in tegra l  to get 

Eo~ = E(KM) + C J o (KM + x +  3n) 4 '  

1 
= E(KM) + C (22) 

9(KM + x) 3" 

Us ing  (20) to evalua te  E(KM) for K u  = 45 a nd  then us ing (22) we o b t a i n  the conver-  
gent  energies - EEA A = 8"492 MeV and  - EUA A = 7-339 MeV. The re  are the upper  a nd  
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Figure 2. S state partial waves U(r) for K = 0, 2, 4 and 10 (curve marked 1, 2, 
3 and 4 respectively). 

lower bounds of the exact binding energy [26], the latter being close to the UAA 
value. In table 6, we quote the results of careful Faddeev calculations [13-1 up to 34 
channels. The UAA binding energy attained in the present calculation compares 
favourably with the 34 channel Faddeev result. F rom table 6, it is seen that Po 
increases with increase in the number of channels, a trend similar to the H H E  
calculation with increasing partial waves, although the H H E  value is larger than the 
Faddeev result. 

4. Conclusion 

In the first calculation of triton ground state with RSC potential by H H E  method, the 
results obtained for the binding energy and the S, S' and D state probabilities compare 
favourably with those calculated by 34 channel Faddeev calculation. The D state 
probabil i ty calculated by H H E  method is somewhat larger than that calculated by 
Faddeev method. The exact BE, which is larger than the UAA value, is also likely to 
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Figure 3. D state partial waves U(r) for K = 0, 2, 4 and 10 (curve marked 1, 2, 
3 and 4 respectively). 

Table 5a. Value of C (in eq. (20)) from the least square fit. 

EAA UAA 
K -- E(K) - A E  r C × 10 -3 - E(K) -- AE r C x 10 -3 

6 4"67 24"362 3"786 24"291 
2"215 2-028 

9 6-885 24"036 5"814 24-201 
0-782 0"737 

12 7"667 24"419 6"551 24-30,5 
0'351 0-331 

15 8'018 24"272 6"882 24"266 

be larger than  7.346 MeV obtained by 34 channel  Faddeev  calculat ion.  These are 
p robab ly  related, since a higher D state probabi l i ty  p roduces  larger S - D  coupl ing  and  
enhances  the b inding  energy. However  a conclusive r emark  can be m a d e  only after 
exact H H E  calculat ion (without  resort ing to adiabat ic  approximat ions)  is performed.  
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Table 5b. Extrapolated energy in MeV using 
relations (20) and (21). 

EAA UAA 
K - E ( K )  -- A E  x -- E (K)  -- A E  r 

18 8"195 7.051 
0"099 0"095 

21 8-294 7.146 
0"060 0"058 

24 8"354 7"204 
0-038 0.037 

27 8"392 7.241 
0"026 0"025 

30 8"418 7-266 
0-017 0-017 

33 8"435 7"283 
0"013 0-012 

36 8-448 7"295 
0-009 0.009 

39 8"457 7"304 
0"007 0.007 

42 8-464 7'311 
0"005 0.005 

45 8'469 7'316 

Table 6. Results of trinucleon Faddeev calculation 
for RSC potential. 

Channel BE Ps Ps' PD 

3 6.384 90.08 1.91 8-01 
5 7.023 88.91 1-67 9.34 
9 7.210 88.88 1.60 9.43 

18 7.231 89.04 1.46 9.42 
26 7.342 89.01 1.41 9.50 
34 7.346 89.02 1.40 9-50 

Thus the present work fills in the gap left so far and provides the much  needed check 
of the H H E  method for a complete reliable calculation of the trinucleon system. 
Although the actual numerical calculations become prohibitively large for the inclu- 
sion of a large number  of partial waves, the convergence theorems for hyperspherical 
harmonics  expansion appear  to be well obeyed and hence convergent  binding energy 
can be extracted from the results with a finite number  of partial  waves. Although the 
number  of  channels in the Faddeev method is not  directly related to the number  of 
partial  waves in the H H E  method,  the general convergence trends appear  to be 
similar. The H H E  provides more direct, physical insight since physical wave functions 
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are obta ined  simultaneously.  
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Appendix A 

1. Coupling matrix for (SS) block 

(S, KI V(G2)IS, K ' )  -(°)~- -, 2xt°)~'r-, 2x, Lrt°)~°'°(°)~'°'°-EX - z r ,  x 

((2)P°i~10"5 { V(1So) + VJ3S1 - -  3D1)} I(2)P°'°-2,,) 

"F (0)i~'2'2--2K (0) ]~'2,2__2K, \/(2)p2'210"5(--2K I/~(3S 1 -- 3D1 ) -- 3 VLs(3S1 -- 3D 1 )) 

Vt3D ~1(2)p2,2 >-I (A1) +2"SV(1D2)+(5/6) , 2,J 2x' a 

2. Coupling matrix for (S' S) block 

' ( + ) M  (0 )M I-{ +) iE?0,0 (0)F0,0 (S',KIV(r12)IS, K ) =  * '2K *'2K'L --2K --2K' X 

((2)P°'°l(1/2x/2)(V(1So) - vJSs1 -- 3D, ))1 (2)P°2)  --2K 

(+)~'2,2(°)~'2,2#2)p2,21(1/2x/2){(3VLs(3SI 3D1)-- V~(3S1 3D1)) "F --2K --2K'  \ - -2K - -  - -  

+ 5V(~D2) - 5/3 V(3D2)}I(z'P]~, ) ]  (A2) 

3. Coupling matrix for (S'S') block 

. 

, , \ - ( + ) ~ r  (+)~ r(+)uo,o(+)~ro,o <S' ,KI V ( r 1 2 ) [ S , K / -  "'2r * ' 2 K ' L  --2K --2K'  X 

((2)P°f I(I/4)(v(XSo) + Vjss, - 3Dl))l(~)pof ) 

-F (+)  l[7'2'2 (+)  J I ~ ' 2 ' 2 - - 2 K  --2K'\/(2)p2'2[(1/4){(--2/¢ Vc(3S1 -- 3D1) -- 3VLs(3Sf - 3D1)) 

+ 5V(1D2) + 5/3V(aD2)} I P2x,)](2) 2,2 

( - ) M  ( - )  ,k] F ( - ) p l ,  1 ( - )  i~, 1,1 / (2 )p1 ,11  
" ' 2 X  " ' 2 K ' L  --2K --2X'  X \ -2r,(1/12){(V(3Po)+3v(ap1) 

+ 9V(1P1) + 5( vc(aP2 - 3F 2) + VLs(aP2 -- 3F2)) } ft2)p~, ) 

( - )  3 , 3 ( - )  3,3 (2) 3,3 + F2K F2K' (  P2r l(1/12)5( Vc(3P2 -- 3 F 2 )  

-- 4VLs(3p2 -- 3F2)) 1(2)P23}~, ) ]  (A3) 

Coupling matrix for (D, S) block 

(D+)~r  (0)] V [-(D +) i~,2,2 (0) i~,2,2 <D+,KIV(G2)IS,  K ' )  = "" 2K+2  "" 2K'L - - 2 K + 2  - -2K'  X 

< (2 )p2 ,2  - - 2 K + 2 1 ( - -  l/x/2) Vr(3S1 - 3D 11~l (2)P2,22K'/N' 

- - (D+) I [?0 ,2  (0)1~'0,0/(2)ID0,2 l / " ) I f  13~ 3 M ~ l (2)p0,0  
- - 2 K + 2  - -2K'N --2K+21N/~'--TX U l -  U l ] l  - - 2 K ' ~  

(D+) ~'2,0__2K+2 (0) 1[72,2/(2)p2,0__2K,\ - - 2 K +  2[d2vr(asl--aD1)[(2)p2k2")] ( A 4 )  
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5. Coupling matrix for (D, S') block 

(D, KI V(r12)lS' ,K')  (D+)isj (+)M [-(D +)  jff'2,2 (+)  1~'2.2 * ' 2 K + 2  *" 2K'L - - 2 K + 2  - -2K'  )< 

((2)p2"IC2+2]O'5VT(3S1 -- 3D~I~',M (2)p2"2--2K' > 

.~_ (D+)I~:'0,2 (+)1~'0,0/(2)p0,2 I Vr(3Sx _ 3D1)l(2)po2.> 
- - 2 K + 2  - - 2 K ' \  - - 2 K + 2  

.~_ (D+)lt?2,O (+)1ff'2,2 / ( 2 ) D 2 , 0  [VT(3S1 _ 3D1)l(2)P22~,>- I 
- - 2 K + 2  "i 2K'\ ~ 2 K + 2  

(D--)M (-)M I - ( D - ) F I , 1  ( - ) / 7 1 , 1  
~ ' 2 K + 2  *" 2K'L - - 2 K + 2  - -2K '  X 

( 2 ) p l , 1  I ( - -  1 / 3 0 )  V T ( 3 P 2  - -  3F2)I(2)P~I~, ) - - 2 K + 2  

(D--) i~3,1 (-) I~'3,3 /(2)/}3,1 
- -  - - 2 K + 2  --2K'\ --2K+2l(9/5) VT(3P2 - 3F2)I(2)P23ip,> 

_ to-)F21~+ 2 (-)F~i~' ((2)P211p+ 2 1 (9/5) V T (3P 2 - 3F 2)l (2)P~i~, > 

( D - - ) p 3 , 3  (-)1t73,3 ((2)P2a~+21(8/15) VT(aP2 3/;' ~1(2)D3,3 \1  (A5) 
- -  - - 2 K + 2  --2K'  - -  --211 ~2K'/-I 

6. Coupling matrix for (D, D) block 

( D + ) •  [-(D +)  jff,2,2 (D +) jff,2,2 (D, KI V(r12)ID, K'> = (D+)N2K+2 "" 2 K ' + 2 L  - - 2 r + 2  - - 2 x ' + 2  x 

( 2 ) p 2 , 2  21(1/4){(V~(3Sx aD~ ) 3VLs(3SI 3Dx) )  - -2K + - -  - -  - -  

_ 2Vr(3Sl _ 3D1 ) + 5/3V(3D2)} ( 2 ) p 2 , 2  \ --2K" + 2 / 

(D + )  F72,O (D +)~'2,O / ( 2 ) p 2 , 0  [0.5Vc(3S1 3 / ,  I ~lp(2)D2,0 \ 
"~- - - 2 K + 2  - - 2 K ' + 2  \ - - 2 K + 2  - -  ~ 1 ] 1  - - 2 K ' +  2 / 

( D + ) ~ ' 2 o 0  (D+)~ '2 .2  ,,, '(2)p2.0 I VT(3S1 3r~ M(2)D2.2 \ 
- - 2 K + 2  - - 2 K ' + 2  \ - - 2K+21  - -  ~" lP l  a 2 K ' + 2  / 

(D +)  jff.2.2 (D+) jET2,0 / ( 2 ) / ) 2 . 2  
- -  - - 2 K + 2  - - 2 K ' + 2 \  - - 2 K + 2 1  VT(3S1 - -  3/5~l/IM(2)D2'0--2K'+2 > 

(a+)po,2 w+)po,2 /(2)u0,2 21(1/2) x 
"l- - - 2 K + 2  - - 2 K ' + 2 \  - - 2 K +  

{ Vc(3Sl -- 3 D I )  - -  3 V L s ( a S 1  -- 3D1) -- 2Vr(3S1 - 3 D ~ I I j I  ~ 1(2)ID0'2--2K'+2 > ]  

( D - ) I V  (D-)NT I-(D-) ~'1,1 (D-)FTI ,1  
"4- "" 2 K + 2  ~ ' 2 K  ' l  - - 2 K + 2  - -2K '  X 

( ( 2 ) p L 1  {1/3V(3Po) + 1 / 4 V ( 3 p 1 ) _  1/150Vr(3P2 3 F 2  ) - - 2 K + 2  

+ 1/60(V¢(3P2_ 3 F 2  ) +  VLs(3p2_  3 F 2 ) }  (2)pl,1_2K,+2/\ 

(D-)]~ '3,1 (D-)FT,3,1 /(2)103,1 
-~ - - K + 2  - -2K 'X - - 2 K + 2  { -  9/25VT(3P2 -- 3"F2) 

+ 0"9( Vc(3P2 - 3F2) + VLs(aP2 3F2)) } (2)p3,1 \ 
- -  - - 2 K  + 2 /  

( D - )  j~'l,3 ( D - )  ~'1,3 / ( 2 )  p l , 3  
-'F - - K + 2  - - 2 K ' + 2 \  - - 2 K + 2  { - -  l ' 4 4 V r ( 3 P 2  3 F 2 )  

+ 0.9(Vc(3P2 3F2 ) 4VLs(3P2 - -  3 (2) 1,3 - - F 2 ) ) } I  P 2 g , + 2  ) 
D-- ) ]~ I ,1  ( D - )  1,3 --I  --/(+2 F2K'+2(t2)p1~+zI9/25VT(3P2 31~ M ( 2 ) p 1 ' 3  \ --211 - - 2 K ' + 2  / 

( D - ) F 3 A  (D--)j~'3,3 / ( 2 ) p 3 , 1  I 1 . 4 4 V T ( 3 P 2  3/7 ~ t (2 )p3 ,3  \ 
- -  K + 2  - - 2 K ' +  2 \ - - 2 K + 2  - -  - -2  ," | - - 2 K ' + 2  / 

(D-)JI~"I,3 (D- ) l f f ' l , l  ,/(2)101,3 19/25Vr(3P2 31v ~,(2)pt , t  \ 
- -  - - K + 2  - - 2 K ' + 2  \ + 2 / + 2  - -  --291 Z2K'+2/  

__ (D--)it73,3 (D-)j~'3,1 / ( 2 ) p 3 , 3  I1.44VT(3P2 31~ M(2)lD3,1 \ 
- - / ( + 2  - - 2 / ( ' + 2 \  - - 2 K + 2  - -  - - 2 / I  - - 2 K ' +  2 / 

_]_(D-)k~3.3 (D-)g?3 ,3  / ( 2 ) D 3 , 3  I ( - -  32/75) VT(3P2 3 F 2 )  - - K + 2  - - 2 / ' + 2  \ - - 2 K + 2  

+ 4/15(V~(3P2 - 3 F 2 ) -  4VLs(aP2 -- 3F2))[(2)P23~,+ 2 ) ]  (A6) 
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The numerical  factors arise from angular m o m e n t u m  coupling coefficients. 

Appendix B 

The various componen t s  of the RSC potential in M E V  (corresponding to isospin 
(t) = 1) are given in eqs (B.1) through (B.5), where h --- 10.463 MeV and x = #r with 
p = 0 .7F-  1 and r is the distance between the interacting two nucleons. 

1. Singlet even components 

V(iSo) = _ h e_xp( - x) 1650.6 e x p ( -  4x) + 6484-2 e x p ( -  7x) (B1) 
X X X 

V(XD2) _- _ hexp(  - x) 12.322exp( - 2x) 1112-6 e x p ( -  4x) 
X X X 

+ 6484"2 e x p ( -  7x) (B2) 
X 

2. Triplet odd components 

x .  

+ 27.133exp( - 2x) 790.74exp( - 4x) + 20662exp( - 7x) 
X X X 

V ( 3 P 1 ) = h [ ( l + ~ + ~ ) e x p ( - x ) - ( 8 + ~ ) e x p ( - 4 x ) ] / x  

- 135-25 e x p ( -  2x) 3x) + 472.81 e x p ( -  
X X 

(B3) 

(B4) 

where, 

V(3P2 - 3F2) = V c + VTS12 -~- VLsL.S 

h e x p ( -  x) _ 933.48 e x p ( -  4x) + 4152.1 e x p ( -  6x) 
Vc 3 x x x 

(B5) 

- 34-925 exp( - 3x) 
X 

VLs = - 2074"1 e x p ( -  6x) 
X 

The components  of the RSC potentials in MeV corresponding to isospin zero are 
presented in eq. B6 through B8. 
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Singlet odd components 

V(1p1) _- 3 h e x p ( -  x) 634.39exp( - 2x) + 2163 .4exp( -  3x) 
x x x 

(B6) 

4. Triplet even components 

where 

,]/ V(3D2) = -- 3h 1 + - + e x p ( -  x) - + exp(--  4x x 
x 

-- 220" 12 exp( - 2x) + 871.0 exp( -- 3x) 
x x 

V(3S1- -3D1)= Vcq- VTS12 q" VLsL'S 

(B7) 

(B8) 

V c = - h e x p ( -  x) 2x) e x p ( -  4x) + 105.468 e x p ( -  3187-8 
x x x 

+ 9924.3 exp(--  6x) 
x 

+ 351.77exp( - 4x) 1673.5 exp(--  6x) 
x x 

exp(-- 4x) e x p ( -  6x) 
VLs = 708.91 2713.1 

x x 

V c, VLs and V r represent central, spin-orbit and tensor term of the RSC potential 
respectively. $12 is the usual tensor operator. 
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