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Abstract .  Bell's inequalities arising from the Einstein-Bell locality postulate or the 
Noncontextuality postulate provide valuable tests of the classical versus the quantum de- 
scription independent of detailed dynamics. For 2 n degrees of freedom, these inequalities 
are violated by the quantum theory by a factor 2 ("-1)/2 raising important questions for 
measurement theory. 

1. I n t r o d u c t i o n  

The desires for (i) Precision, (ii) Causality and (iii) Locality are three of the major 
motivations to look beyond present quantum theory. The standard quantum de- 
scription splits the world into a 'system' described by a wave function and an 'appa- 
ratus' described by classical coordinates such as pointer positions. The 'Heisenberg 
split' between system and apparatus occurs at an ill-defined boundary; moreover 
quantum and classical descriptions can at best agree only approximately at the 
boundary. John Bell [1] thus argued that Quantum Mechanics is intrinsically am- 
biguous and approximate; a fundamental theory must attempt to do better. An 
obvious attempt to do better might be to extend the wave function description 
to the whole universe. But the time development implied by the linearity of the 
SchrSdinger equation then leads us to consider 'grotesque' wave functions of the 
form 

]r = ale ,  here) + ~/[r there) 

which is a superposition of macroscopically distinct configurations, even if we start 
from a wave function narrow on the macroscopic scale. Grotesque wave functions 
arise routinely in measurement type situations typified by the SchrSdinger Cat 
Paradox [2]; yet, as Bohr stressed [3], the account of all evidence must be given in 
classical terms. In a picture in which the wave function is the complete description 
of the state, there must exist a mechanism of decoherence by which grotesque wave 
functions are reduced to wave functions or  density matrices narrow on the macro- 
scopic scale. There are now several such candidates [4] for an extended quantum 
mechanics. 

The principle of causality on the other hand leads us to a picture in which 
the state is specified by supplementing the wave function by additional variables 
(hidden variables). Consider, e.g., photons passing successively through two linear 
polarizers with axes ~ and b. A photon which has passed the first polarizer has its 
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wave function specified (by the polarization axis a-'); yet quantum mechanics does 
not tell us whether the photon will pass through the second polarizer; it only tells 
us that the probability of passage is [~.~'[2. If we postulate the principle of causality: 

Different outcomes have different causes, 

then we must conclude that the photons which passed the second polarizer must 
have had some properties different from properties of those photons which did not. 
Since the wave function does not reveal the difference, these properties must be 
additional variables. 

Einstein, Podolsky and Rosen [5] came to the same conclusion that the wave 
function must be an incomplete description by using an entirely different principle, 
viz. "Einstein locality". For the case of two systems ~cl and $2 which have inter- 
acted in the past but are now spatially separated, the principle states [6] "the real 
factual situation of the system 5'2 is independent of what is done with the system 
5'1, which is spatially separated from the former". On formulating Einstein local- 
ity in precise mathematical terms, Bell [7] made the shocking discovery that the 
locality postulate contradicted the statistical predictions of quantum theory. It has 
since been verified that two photon correlation experiments [8] violate Einstein-Bell 
locality predictions (Bell's inequalities), and respect quantum theory predictions. 

If we envisage then the possibility of hidden variable theories, these variables 
should not be constrained to obey locality. An example of a hidden variable the- 
ory violating locality is the De-Broglie-Bohm theory [9]. In such a theory of the 
universe, a grotesque wave function is no problem of principle, because the precise 
positions of objects are given in classical terms by the additional (hidden) variables. 
No mechanism of decoherence is needed. 

If grotesque wave functions exist, they might be signalled by characteristic 
macroscopic interference phenomena such as those considered by Leggett et al [10] 
for SQUIDS. Here we shall use the violation of Bell inequalities as a measure of de- 
parture from classical behaviour. We discuss recent results [11,12] which show that 
for a system with 2" degrees of freedom quantum theory (with grotesque states) 
leads to a violation of classical behaviour growing exponentially with n. Possible 
implications for quantum measurement theory will be discussed. 

2. Bell 's inequali t ies  f rom Einste in  locali ty 

Consider two particles flying apart from an apparatus S into two instruments which 
measure physical quantities A and B with instrument setting parameters a and 
b respectively. We assume that the measurements occur in spacelike separated 
regions, and that, by the very definition of A, B, IA[ < 1 and [B[ _< 1 (e.g. A = 
+1 for transmission through one channel and -1  for transmission through the 
other channel of a two-channel polarizer). Let ,5' produce the two particles in a 
state characterized collectively by variables (including hidden variables) A with 
probability distribution p(A). Then Einstein-Bell locality means that in this state 
the expectation value A(A, a) of A can depend on A and the instrument settings a, 
but not on the far away instrument settings b. With a similar argument for B, we 
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deduce that for N coincidence detections 

P(a,b) =_ (AB) =_ -~ E AiB, = dAp(A)fl(A,a)[~(A,b), 
i = l  

where 

p(A) > 0, /dAp(A)  = 1, 12(,x,,,)l _< 1, IB(,X,b)l _< 1. 

The elementary inequality 

(1) 

(2) 

I*(y - y')l + I~'(y + y')l <_ 2 max(l*l, I*'l)max(lYl, IV'I) 

then leads to the BeI1-CHSH inequality 

IP(a,b) - P(a,b')l + IP(a',b) + P(a',b')l < 2. (3) 

In the Bohm-Aharonov example .of a pair of spin half particles in the singlet state 
r the quantum mechanical correlation function is 

PQM(~, b) = (r ~#2" bit) = -~" b, (4) 

which makes the left-hand side of Eq. (3) equal 2V~ for the choice ~ = (0, I, 0), 
g = ( 1 / v ~ , l / v ~ , 0 ) ,  g '  = (1,0,0), b '  = ( 1 / v ~ , - 1 / v ~ , 0 ) .  This proves Bell's 
theorem: the statistical predictions of quantum theory violate Einstein-Bell locality. 

A similar violation of locality is predicted for the two-photon case by quantum 
theory and has been confirmed experimentally by beautiful experiments [8]. Even if 
Bell's inequalities are violated for few particle systems, they are useful because they 
yield a quantitative measure of the departure from classical behaviour. In quantum 
measurement theory one expects to regain classical description for macroscopic 
systems. Bell's inequalities for multiparticle systems can thus be a valuable tool to 
test the validity of the classical description for macroscopic systems. 

Consider a system of particles 1 ,2 , - . . ,  n flying apart from an apparatus S pro- 
ducing them. Let the physical quantities A1, A2 , " - ,  An be measured for them by 
instruments in spacelike separated regions, settings of the instrument measuring 
the jth particle being denoted collectively by aj. We assume that by their very 
definition IAi[ ~ 1. According to Einstein-Bell locality, the n-particle correlation 
function has the representation, 

with 

f~ f l  

P(al,. . . ,  a,) = (~I A,) = / dAp(A) H A'(~' a~), (5) 
d----I i = I  

f 
p(~) _> 0, Jd~p(~)  = l, I%(~,a,)l _< 1 (6) 

Here locality has been used to require t.hat the probability distribution p(A) of the 
hidden variables of the initial state produced at S is independent of the ai, and 
each Ai(A, ai) is independent of the far away apparatus parametes aj (with j ~ i). 
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In a quantum theory obeying microcausality the physical quantities Ai are rep- 
resented by eigenvalues of mutually commuting self-adjoint operators Ai(ai); in a 
quantum state r the correlation function is 

P,~( . , , . . .  , . . )  = ( r  A~(.,)Ir (7) 
i=1 

Mermin [11] used a state r of n spin 1/2 particles (which was exploited earlier by 
Greenberger, Home and Zeilinger [13] to present a proof of Bell's theorem without 
inequalities), lie derived elegant n-particle Bell inequalities which are violated by 
quantum correlation functions by a factor 2 (n-x)/2 for odd n, and 2 "/2-1 for even n. 
Roy and Singh [11] used states more general than the GHZ state, and derived new 
Bell inequalities which are violated by quantum correlations by a factor 2("-1)/2 
for both odd and even n. 

We now derive inequalities on linear combinations of the correlation functions 
P ( a l , . . .  ,an) using the methods of MRS [11]. Consider 

F(") = I l L ,  [Ai(ai) + iqiAi(a~)], A (n) = (F(") + F(n)t)/2, 

B(") = (V(") - V(")t)/(2i), (8) 

where r~ = 4-1. Then, a (") = (r162 B~ '0 = (r162 involve only linear 
combinations of quantum correlation functions in the state r Their hidden variable 
analogues are 

where A(n)(A) - ReF(")(a), B(n)(A) = I m  F(")(A), and 

n 

F(n)(A) = H [ii.i(A, ai) + iqiAi(,~,a~)]. (10) 
i = 1  

Since the A(n)(,\) and B(a)(A) are linear functions of each of the arguments 
Ai(~, ai) and -4i()~, a~), their maxima and minima- on varying the arguments be- 
tween -1  and +1 - must be reached on the boundary, i.e., for each argument must 
be 4-1. It follows that 

and hence 

where 

IA(")(~)I < V., IB(")0,)I < P- (11) 

IA~)vl < v., n(-) (12) u u v  [ < Pn, 

Pn = 2 ("-1)/2 for n odd; p, = 2 n/2 for n even. (13) 

We now show that these locality inequalities can be violated by quantum cor- 
relations. Consider n spin 1/2 particles and Ai(ai) = ~i �9 ffi. Choose all qi = +1, 
all a'i = k, all ~i r = Z), and for [r consider the choices 

I~ '(.n)) = (I + +- . .  +) 4. il . . . . . .  ) ) l y e ,  Ix(. ")) = (I +. . .  +) +1 . . . . .  ) ) / ~ ,  (14) 
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where the sign 4. within the kets on the right-hand side at the jth place denotes 
eigenvalues 4-1 of az for the jth particle. Then, 

(A(") :!= 2"-1)]X(~"))= 0, (B(") =F 2"-1)Jr = 0; (15) 

hence the quantum mechanical expectation values ~(n) and R(n) equal 4-2 n-1 for �9 .r u@ 

r = X (n) and ~b ('0 respectively, violating the locality bounds (12) by a factor 
2 ('v-D/2, with N = n for n odd, and N - n - 1 for n even. 

For even n, Roy and Singh [11] obtained an improved inequality. Using (11) we 
have 

I,, =_ I f d A p ( A ) B ( " - I ) ( A ) ( ~ . . ( A , a , , )  + 

+l f dAp(A)AC"- ' ) (A ) ( f l t . , (A ,  an) - An(A, a~))l (16) 

<__ 2 n/2, if n is even. 

The quantum mechanical value corresponding to the left-hand side of (16) is 

I . ( r  = I(r + A.( . ' ) )Ir  (17) 
+ ] ( r  - An(a~))]r 

Choosing as before Tli = 1, ~i = ~, gi ~ = ~ for i <_ n - 1, but keeping 8,, arbitrary, 
and defining 

([r let)) --~ ~2((I~(+n-1)), IX(n-I)))] -)  
(18) 

-(1r162 ixr 
we have, 

(r (n-l), B(n-l))~n" an Ir = -2n-2((an)y, (an)z). (19) 

Further, choosing ~, : (0,1/x/'2,1/x/~), and ~ : (0,~l /v~,- l-1/x/~) for the 
states [r ]r we obtain, 

I,,(r = In(r = 2 (2"-1)/2, (20) 

which violate the locality inequality (16) by a factor 2 (n-1)/~ for even n. 

3. Bell 's  inequal i t ies  f rom n o n c o n t e x t u a l i t y  

In the quantum theory, the expectation value of an observable A is unaffected by 
the previous (or simultaneous) measurement of any set of mutually commuting 
observables commuting with A. This 'statistical noncontextuality' provides the in- 
spiration for the 'noncontextuality' hypothesis in hidden variable theories or deeper 
level theories. In a deterministic noncontextual hidden variable theory, the value 
of an observable A is independent of which particular set of mutually commuting 
observables commuting with A are measured together with A. The Gleason and 
Kochen-Specker theorems [14] prove the impossibility of such a hidden variable 
theory for quantum mechanics. A particularly interesting case of 'noncontextual- 
ity' arises when observables A and B commute due to spacelike separation, and 
the noncontextuality hypothesis becomes the Einstein locality hypothesis which we 
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discussed before. In that case Bell's theorem proves a stronger result, viz. the 
impossibility, not only of deterministic but also of stochastic local hidden variable 
theory for quantum mechanics. Recently [12] the Gleason-Kochen-Specker theorem 
too has been extended to stochastic noncontextual hidden variable theories. Fur- 
ther, for a single particle of spin S, with 2S+ 1 = 2 n, n being an integer, it has been 
shown that the quantum violation of noncontextuality grows exponentially with n. 
These violations are novel illustrations of the quantum theory conflicting with the 
classical idea of noncontextual realism. Evidently, noncontextuality is more strin- 
gent than locality because it applies to a greater variety of physical situations, e.g. 
for a single high spin particle there are no locality inequalities. 

Stochastic  noncontextual  hidden  variable theories 

Let Al(al), ..., An(an) be dynamical variables corresponding to different degrees 
of freedom of a given physical system, the settings of the apparatus measuring 
Aj(aj) being denoted by aj. In the quantum theory the dynamical variables are 
represented by observables Ai(ai), with 

[Ai(ai), Aj(aj)] = 0. (21) 

In a hidden variable theory, the state of the system may be characterized by vari- 
ables A (which may include the quantum state vector as well), with p(A) being their 
probability distribution. For given A, the dynamical variables have expectation val- 
ues AI(A, al), As(A, a2), ..., An(A, an), noncontextuality implying that Ai depends 
only on A and ai, but not on aj with j # i. We assume that by the very definition 
of the Ai, JAil < 1 (e.g. Ai = +1 for transmission through a polarizer and -1  for 
nontransmission), and hence that 

< I, Vi. (22) 

Further, in complete analogy to Bell's argument for local stochastic theories [3] 
we define noncontextual stochastic theories to be those in which AiAs(A, al,as) 
= Al(A,al)As(A,as). To motivate this, suppose that .Tti(A,ai) is the average over 
hidden variables Ai of the apparatus which measures Ai to be Ai(A, Ai,ai). Non- 
contextuality requires that AI(A, Al,al) and the probability distribution pt(A1) of 
A1 must be independent of which commuting variables are measured together with 
A1 and in particular of As,as. Hence 

AlAs(A, at, as) = fdAtdA~pl(A1)ps(A~) 

• AI(A, AI, al)As(A, As, as) = Jil(A, a ) is(A, as). 

The correlation function for the n-variables (which could even refer to commuting 
observables for a single particle) thus has the representation (5), (6) for the noncon- 
textual stochastic hidden variable theory and the representation (7) for quantum 
mechanics. The Bell inequalities (12) and (16) therefore follow exactly as in the 
last section, and may be compared with quantum mechanical results in specific 
examples. 

Power  law violat ion of  classical behav iour  for a par t ic le  of  high spin 

A striking consequence of the above formulation of stochastic noncontextual the- 
ories (entirely outside the scope of Bell's locality theorem) is the following result. 
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For a single particle of spin S = (2" - 1)/2, where n = 1,2,3, . . . ,  the quantum 
theory violates noncontextual realism by a factor (S + 1/2) 1/2 if n is odd, and 
(S + 1/2)112[~/2. if n is even. 

A particle with spin S may be described quantum mechanically by means of a 
(2S + 1) component wave function r in a suitable orthonormal basis In). When 
2S + 1 - 2 '~, we may choose the labels a to be n-tuples: a -- m l m 2 . . . m n ,  where 
mi -- +1 (or simply mi = 4-). Thus 

I r  = - = = + .  ( 2 3 )  

Consider the hermitian operators Ai(ai) with matrix elements 

( a ' l A , ( u , ) l a )  = (~ .  ~,).~:,~, 1"I6,~;,~,, i = i , . . . ,  n, (24) 
i#i 

and the 8 are Pauli matrices, i.e. where a I - m~ .. .ran, 

a . a . ( a. a,  - ia, ) 
az + iav -az  

Then A~(ai) equals the unit ma'~rix and hence each A~(ai) has eigenvalues 4-1. 
Further, for i ~ j ,  

(a']Ai(ai)Aj(aj)la) -" (a'ai)m~m'(a'a'J)m'jm, H 6m',m,, 
~ #i..i 

which shows that the Ax (a l ) , . . . ,  A, (a, 0 are mutually commuting operators. Hence 
we obtain the representation (5) for their correlation function in stochastic noncon- 
textual theories. With the notation (23), choosing for [r the wave functions (14), 
we again obtain Eq. (15) which violate the bounds (12) (this time derived from 
noncontextuality) by a factor ~rowing like ~ for large 5". 

4. Consequences  for m e a s u r e m e n t  theory  

We found a quantum violation of Einstein-locality in a system of n spin 1[2 par- 
ticles and a quantum violation of noncontextuality for a single particle of spin 
S = (2 n - 1)/2. The two systems have the same number of degrees of freedom 
2"; the violations in both cases grow exponentially in n or as the square root of 
the number of dc~,rees of freedom. Thus, it might be generally true that for a sys- 
tem with large number of degrees of freedom, quantum theory implies violation of 
classical behaviour growing like square root of the number of degrees of freedom. 
Note however that the quantum states such as (14) and (18) leading to these large 
violations are grotesque states. If such large violations are not seen in nature, we 
must look for an extended quantum theory which suppresses grotesque states. The 
particular extension due to GRW [4] postulates a spontaneous localization mecha- 
nism which makes the spatial wave function narrow on the macroscopic scale. This 
might suppress violations of Bell's inequalities following from locality; but it con- 
tains no mechanism to suppress the grotesque wave function for a sitigle particle of 
high spin. A more general mechanism of decoherence will be needed for that. 
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