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Abstract. Several examples of the application of the minimax technique to relativistic 
calculations on one-electron atoms are given here. Normalizable eigenfunctions corresponding 
to the ground states of one-electron atoms with various angular momenta are derived 
analytically. 
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1. Introduction 

It is known that the minimax theorem guarantees the occurrence of an upper bound 
to the ground state energy of a relativistic one-electron system when the trial wave 
function used has well-behaved properties. The state of a one-electron system is 
described by a four-component spinor that can be written as 

where the upper component u and the lower component I are two-component spinors 
and N is the normalization constant. The lower component l is formally obtained 
from the application of an operator f~ on u: l = f~u. Variation of (HD),  the expectation 
value of the Dirac Hamiltonian HD, as a functional of ~ leads to a stationary point. 
The optimum coupling operator is given by 

f~o = c(E o + c 2 _ Vcxt)- la'P (2) 

where Vext is the external potential, p the linear momentum and try,, oy and az the 
spin matrices due to Pauli. We adopt the system of units: m = 1, lel = 1 and h = 1; c 
is the speed of light. The optimized energy E ° must be determined from the equation 
(Rosicky and Mark 1975) 

(u, [E ° - c 2 - V c j  u) = c 2 (u, o'" 8 [E ° + c o - V~xt'] - t a'pu). (3) 

One can easily show that E ° is a maximum (Datta and Devaiah 1988). One can also 
show that when - 2 c 2 <  (V~t)u < 0, that is, when the expectation value of the 

521 



522 Shibnath Datta and S N Datta 

potential represents a realistic bound state, a well-behaved upper component function 
u gives one and only one real solution E ° such that 

E ° > c 2 + ( V~ t)." (4) 

A subsequent variation of E ° as functional of u generates an upper bound (Datta and 
Devaiah 1988). 

Sometimes it becomes advantageous to use, in stead of (3), the analogous equation 
in terms of the lower component l: 

(l, [E ° + c 2 - V,~,] l) = c 2 (l, a" p [E ° - c 2 - Vex,] - ltr. pl). (5) 

This result is obtained by writing u = ogl and then maximizing (HD) by varying o9. 
The optimum operator o90 is given by 

o90 = c[E ° - c 2 - V~xt] - 1 tr.p. (6) 

In this paper we provide several examples of the minimax calculation on Dirac 
one-electron atoms where V~xt = - Zr- 1. Our starting point is necessarily the central 
equation (3) or (5). The objective is to derive, from the application of the standard 
variation method, a few low-lying eigenvalues of the discrete spectrum and the 
associated eigenfunctions of Ho. These illustrations do not contribute any new theory. 
Their importance lies in that they are new analytical calculations for the derivation 
of standard atomic results. 

2. Simple cases 

I t  would be worthwhile to discuss a few simple cases before the general treatment is 
presented. Though simple, these treatments point out the possible pitfalls and fallacies 
one encounters while carrying out a general variational analysis. 

Example 1. Spinors of s symmetry from S TO bases 

The simplest possible form of the upper component is 

u = N,r"- X exp(-  ~r)( Y°°~ O' c~) ) (7) 

where N, is the normalization constant of the upper radial component. The parameter 
n can vary continuously, that is, n can be a fraction. Use of this upper component in 
(3) yields 

E ° - c 2  + n - t ( Z = c 2 N 2  f ;  dr[(E° +c2)+ Zr-1-] -1 

x [(1 - n) + (r]2r2"-2exp( - 2~r). (8) 

When E ° < -  c 2, the integrand on the right hand side has a simple pole at 
r = - ( E  ° +c2)-1Z.  The principal value of the integral is in general complex as 
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discussed in the appendix. If one wants to keep up a real solution E ° < - c 2 one must 
avoid the simple pole by writing 

n = 1 - (E ° + c 2)- t (Z. (9) 

This substitution immediately leads to the results 

E o = + c2[1 + ~2(~2 _ 2(Z)]a/2 (10) 

where ~ is the fine structure constant, and 

n +  = 1 + (~ - 2 Z ) -  x(1  - e)Z 

where e is the ratio of energy E ° and rest energy mc 2, 

F, = c - 2 E  °. 

(u) 

(12) 

The point ( = 2Z in a singular point of n_. That  the negative solutions of E are at 
all possible does not contradict our earlier assertion (Datta and Devaiah 1988) that, 
for a well-behaved upper component function, no solution E ° < ( c 2 +  (V~t ) , )  is 
possible for a realistic expectation value of the external potential. When 0 ~< ( < 2Z, 
one finds that n _ ~< 0 and the expectation value, ( V~ t >. = - n-  ~ Z, is actually positive. 
For ( V,~t> . > 0 real solutions of negative energy are indeed possible, but the wave 
functions are non-normalizable. The plot of n_ as a function of ( is shown in figure 1. 
For ( > 2Z, the parameter n_ is positive and ( V~xt>. decreases monotonically from 

6.0 ' / 
\ 

2.0 / ~'°-~ 
" ~  ~'~ t ~  o..m t~.~ t~_ q 

- 2 . 0  ~, ~ 

0.0 2.0 4.0 6.0 

Zeta 
Figure 1. Calculated (E_+ T-c2), (Vext>+ and n+ as functions of exponent ~ for l =  0 and 
Z = 1. Solid and dashed lines correspond to thepositive-energy solutions and the negative- 
energy ones respectively. Symbols are used as follows: ( i) .  stands for (E_+ ~ c 2) in atomic 
unit and (ii) [] for n+, and (iii) lines without symbols are plots of ( V¢,,)+ in atomic unit. 
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zero as ( increases (from 2Z). A real solution E ° < - c 2 exists but the wave function 
is again unrealistic since the expectation value of 'kinetic energy', (c~t.p>, is negative 
[as can be seen from the difference of curves in figure 1], and a sensible function is 
not obtained from the variation of energy with (. 

Variation of E ° with ~ gives the optimized exponent ( = Z and hence the following: 

(i) A minimum, E ° , for the positive E ° values, 

E ° = c2)q - Els (13) 

with n+ = ( 1 -  0 ~ 2 Z 2 ) - 1 / 2  ~ ~1" In this case the optimized s spinor is identical with 
the ls eigenfunction of Ha with eigenvalue Els. 
(ii) A maximum, E°_, for the negative solutions of E °, 

E ° = - E ° (14) 

with n_ = - 21. The state represented by the maximum is not a realistic bound state. 
The minimum E ° is generated here as a byproduct. The right way to obtain the 

minimum is to start from (5). If we write 

~. , f  Y,o(O, ~a) '~ 
l = N, r  ~- l e x p ( -  ~r)~ 2_ 1/2 Y,, (0, 4))) (15) 

then (5) takes the shape 

E° +c2 +n-l~Z=c2N2 f ~  dr[(E°-c2)+ Zr- ']  -1 

x [(1 + n) - (r]Er2"-2exp( - 2(r). (16) 

The integrand in the right hand side has a simple pole for 0 < E ° < c 2. In order to 
get rid of the complications arising from this pole we write 

n =  - 1 +(c  2 - E ° ) - l ( z  (17) 

which immediately leads to (10) and subsequently to the minimum and maximum 
specified above [see (13) and (14)]. 

A very special case arises when a positive integer is chosen for n and the principal 
value of the integral in (8) becomes real. A solution E < 0 is then possible, but it must 
be viewed as a spurious solution. When n = 1, (8) yields the minimum 

Emi n = C 2 - -  ~zl 2 _ ~1 224. 47 ~$~4.Z 6 +... (18) 

and the optimized exponent 

( = Z I  1+  1 2Z2 1 4Z4 / ~ - ~  +...j- 

The minimum is an upper bound to the ground state energy, 

1 4 6  Emin=Els +~0~ Z + .... 

(19) 

(20) 
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Example 2. Continuum state solutions 

If we choose the upper component given by (7) with (r replaced by ip.r we get a trial 
function for the continuum states. We use (3) and after carrying out integration over 
a spherical volume of radius R, we obtain 

E ° =  + (c4+ c2p2) 1 /2-  1 + 2n R + O[(Z/R)2 and higher]. (21) 

Obviously, to order R -  1Z, there is no solution in the range 

- -  C 2 d- ( V e x t )  . ( E ° ~< c 2 + ( Vext>.. (22) 

If energy is to be negative, the integral obtained from (3) would have a simple pole; 
in the case the integr.al is substituted by its principal value as in the appendix, we see 
that a real solution E < 0 exists for a finite R only when n is a positive integer, so it 
must be spurious. As R --* oo one obtains the continuum state eigenvalues 

E ° = _+ [c a + c2p2] 1/2 (23) 

The parameter n is not optimized here. It would be optimized only if one attempts 
to calculate the continuum state eigenfunctions and not merely the eigenvalues. 
Continuum state eigenfunctions of positive energy were calculated by Darwin (1928) 
and an algorithm for computing the negative-energy eigenfunctions has been recently 
discussed by Belifante (1991). 

3. Lowest eigenvalues of the discrete spectrum 

So far we have considered discrete states with l = 0(] = 1/2). We now derive eigenstates 
of the lowest eigenvalues for different combinations of l and j by a minimization 
procedure starting from (5). The casesj = l + 1/2 and j  = l - 1/2 are treated separately 
for reasons which will be obvious later. 

Example 3. j = l + 1/2 

Following Bethe and Salpeter (1957) we write the lower component as 

- i [ (21  + 3)- 1(I - m + 3/2)11/2 Yl+l,rn_l/2(O,~))~ 
l= f(r) i [ (21+3)-1(I+m+3/2)]  1/2 Ye+l,m+l/2(O,q~)f (24) 

The trial small component must have as few radial nodes as possible such that the 
energy is maximally lowered. Hence it is written as 

f (r) = Nr ~- 1 e x p ( -  (r). (25) 

Use of this expression in (5) results in 

E + c 2 + n - l ~ Z = c 2 N  2 d r [ ( E - c e ) r + Z ]  -1 
0 

x [(n + l + 1) - ~r]2r 2"- 1 e x p ( -  2~r). (26) 
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In order to avoid the simple pole for 0 < E < / 2 2  one demands 

( = (n + l + 1)(c 2 - E ) Z -  1 (27) 

which gives the energy E as 

E = 1 - 2not2Z2(1  - t - / ) -  1 [ (n  + I + 1) 2 - -  o~2Z 2"] - 1. (28) 

If E is minimized by varying n one gets 

nmi. = [(1 +/)2 _ ct2Z2]:/2 _ 71+l, (29) 
and 

e = C -  2 Emin  = (l + 1)- 17, + 1. (30) 

Further,  using (27) one calculates the exponent 

( = ( l +  1 ) - l Z  (31) 

such that  the optimized large and small radial components  are 

g(r) = N'[(1 + e)/2]l/2F;*~exp[ - Zr/(t + I)'], (32) 
and 

f (r)  = - [(1 - e)/(1 + e)]l/2g(r) (33) 

respectively. By putting I = 0, 1, 2, etc. in these equations one obtains the eigenfunctions 
lSj=I/2, 2pj=3/2, 3dj=5/2 etc. 

Example 4. J = l -  1/2 

The trial lower component  is written as (Bethe and Salpeter 1957) 

-- i [(2l--  1)- i ( l  + m - -  1 / 2 ) ]  1/2 Y/_ 1.m_1/2(0, ~ ) )  (34) 
l = f ( r )  i[(2l 1 ) - l ( l - - m  - 1/2)] 1/2 Yl_l,m+l/2(O, dp) 

such that  
l f ] ( [ ( 2 / +  1 ) - l ( l -  m + 1/2)] 1/2 Yt.m- 1/2~ 

~.pl= - [ d f / d r - ( l -  l ) r -  \ [ (2 l  + 1) -1( l+  m + 1/2)] 1/2 Yz.m+l/2/" 

(35) 

If one chooses the small radial component  as in (25) one obtains 

df/dr - ( l -  1 ) r - i f  = [(n - 1)r -1 - ~] (36) 

and for n < l the pole arising out of (E - c 2 + r -  1Z) in the denominator  in (5) is not  
eliminated. Therefore, the best lower-energy choice for f is 

f ( r )  = (c 1 + c 2 r) r"-  1 exp [ -  ~r]. (37) 

When this expression is used in (5), the denominator  is found to be cancelled by a 
factor in the numerator  of the integrand if one writes 

(E - c2)[(Z + (n - / ) ( E  -- c2)-]cl - Z [ ( Z  + (n -- l+  1)(E - c2)3c2 = 0. (38) 



Minimax technique 527 

This leaves the equat ion 

c 2 [Z  - c 2 Z -  1(/2 _ n 2)] I2 "-x + [ c[ {( c2 + E) + c 2 ~Z-  X(l - n)} 

+ cl c2 { 2 Z -  c2(12 - nZ)Z - 1 + cZ((n + I + 1)(c 2 - E) -  1 }]I2n 

+ [clc2{2(c 2 + E) - c2~2(c 2 - E) -1 + c2~Z- l ( l  - n)} 

+ c 2 { z +  c2~(n+ l+ 1)(c 2 - E ) - ~ } ] I 2 . + 1  +c21-( c2 + E) 

- c2(2(c 2 - E)-  1 ] I2,+ z = 0 (39) 

where the integrals I's are given by 

I i = f :  d r r i e x p [ -  2~r] = (20 -o+ X)F(i + 1). (40) 

Since this should be satisfied by all values of n for every (, the part  that is explicity 
independent  of n is equated to zero. This gives 

g = c - 2 g  = (1 - ~ 2 ( 2 ) 1 / 2  (41) 

and 
c~ EZ - c z Z -  ~(12 _ n z)] + [c2 {(c z + E) + c 2 ~Z-  '(l - n)} 

+ cl c2 {2Z -- c2(I 2 - n 2 ) Z -  x _ c z ((n + 1 + 1)(c 2 -- E)-  x } ] ( -  t n 

+ c2 {(c 2 + E) + c 2 (I - n)} + { z  + c 2 

x ( n + l +  1)(c2-E)-l}]~-2n\n+( =0 .  (42) 

Minimization of E by varying n as shown in figure 2 for different I gives 

n = (/2 _ ~2Z2)1/2 ~ 7 1 ,  (43) 

e = (1 + y ~ ) N -  x, (44) 
and 

= N -  t Z, (45) 
where 

N = [(1 + yl) 2 + ~2Z2]t/2. (46) 

The relationship (37) along with (43), (45) and (46) defines the small radial components  
of the ground state wavefunctions for various non-zero l, (functions 2p~/2, 3ds/2, 4f5/2, 
etc.). The lowest eigenvalues are given by (44). 

4. D i scuss ion  

We have given here a few examples of the application of the minimax technique in 
relativistic atomic calculations. These examples clarify the advantage of the minimax 
procedure - -  that an upper  bound to the ground state energy is always obtained from 
the use of a well-behaved trial function. 

One important  difficulty in relativistic quantum mechanical  calculations is that 
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Figure 2. Numerical demonstration of the minimization of energy for j = I - 1/2. Energy 
E has been calculated from (42) subject to (38) and (41). We have taken Z = 1. 

energies same as the ground state energy can be calculated with different spinors 
(Datta 1987). This difficulty does not arise in the energy minimization procedure 
starting from either (3) or ('5). 

For the sake of completeness we point out the c ---, ~ limit of the results calculated 
in this work. In this limit (3) changes into the purely nonrelativistic version 

1 2 (u, [E + c 2 -- Z r -  1 ] u) = ~ (u, p u). (47) 

Solutions for j =  1 + 1/2 change since nmi n in (29) changes to (I + 1). Optimized 
parameters for j = l - 1/2 also change; the limiting values are nmi, = l, N = l + 1, and 

= Z( l  + 1)- 1. In both the cases we find 

min El = c 2 - Z2/2( /+ 1) 2 (48) 

corresponding to wave functions with radial components 

or(r) = N , F e x p [ -  Zr/( l  + I)], (49) 

f t(r) = O. 

These are precisely the nonrelativistic ground state energies and wavefunctions. 
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Appendix 

O u r  objective is to evaluate  the principal value P(n) of  the integral S~dzf(z) where 
f(z) = z"(z - a)- 1 e x p ( -  bz) with a > 0, b > 0 and - 1 < n < 1. 

We note that  t f(z)l~O as z ~  for - g / 2 < O < g / 2  while z = R e  i° such that  
Sf(z)dz~O as R ~ ,  the integrat ion being carried out  over  the right vertical 
semicircle. I f  n > O, there is no essential singularity o f f ( z )  at  z = O. I f  n is not  zero or  
an integer, posit ive or  negative, then (x = 0, y = O) is the branch  point  with the x-axis 
as the branch cut. 

Fo r  n > 0 (but n < 1) we draw the contour  as shown in figure 3(a) and obta in  

[exp(2gin) - 1] P(n) = ilt[1 - exp(2gin)]a"exp(- ab) (A.1) 

where P(n) is the principal  value sought. Hence for n # 0 and  n ~ l, 

P(n) = - i~za"exp(-  ab) (A.2) 

For  the positive integral values of  n, as for the fractional values - 1 < n < 0 and n > 1, 
one may  calculate the principal values by using the recurrence relat ionship 

P(n + 1) = b -("+ 1)F(n + 1) + aP(n). (A.3) 

Thus for - 1 < n < 0 we get 

P ( n )  = - ina"exp(- ab) - a- i b-(.+ 1)F( n + 1). (A.4) 

P(n) is obviously not  cont inuous  at  n = 0. The  principal  value at n = 0 is evaluated 
by drawing the two contours  in figure 3 (b). In tegra t ion  along the upper  contour  yields 

P(O)=inexp(-ab) + ~ dy(y + ia)- lexp(- iby)  (A.5) 
J o  

C : ~ • Re(z) 
> ~ . ,  > ) - (a) 

Ira(Z) 

~ Re(z) 

(b) 

Figure 3. Contour  for integration in the complex r plane: (a) 0 < n < 1; (b) n = 0. Two 
contours have been used in case (b). 
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and that along the lower contour gives the result fo 
P(0) = - ircexp( - ab) - dy(y + ia)- l exp( - iby). (A.6) 

Combining these two expressions one obtains a real principal value 

P(0)= f ~  dy(y 2 + a 2 ) - l ( y c o s b y - a s i n b y ) .  (A.7) 

Knowing P(0), the value P(i) where i is a positive integer can be easily calculated. 
One notes that P(n) is in general complex. It is purely imaginary in the range 

0 < n < 1, and purely real for n = 0 and for integral values of n. 
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