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Abstract. A self-consistent theory of dyons in Abelian and non-Abelian limzts has been 
formulated in terms of an extra magnetic symmetry and topological magnetic charge. It has 
been shown that the restricted gauge potential describes the fields of dyons in terms of two 
regular (time-like) potentials only when recourse is made to the duality of topological 
~magnetic} and isocolour (electric) charges. Choosing a suitable Lagrangian density for the 
system of dyons in non-Abelian gauge theory, the field equations, energy-momentum tensor, 
Hamiltonian and momentum densities have also been derived and the conservation of the 
four-linear momentum and the total angular momentum has been demonstrated. 
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1. Introduction 

The question of existence ofmonopoles ('t Hooft 1974; Polyakov 1974) has now become 
a subject of utmost interest and enormous potential importance in connection with 
quark confinement problem in quantum chromodynamics (Peshkin 1978; 't Hooft 
1979), possible condensation of vacuum ('t Hooft 1979, 1981), its role as catalyst in 
proton decay (Rubakov 198 I; Callan 1983), the possible explanation of C P violation in 
terms of non-zero vacuum angle of world in magnetic gauge space (Witten 1979), the 
role of monopole in current grand unified theories (Dokos et a11980; Daniel et al 1980a) 
and the unification programme of electromagnetic and gravito-Heavisidean fields 
(Rajput 1982; Gross and Perry 1983). The magnetic condensation of vacuum 
guarantees the absolute colour confinement through dual Meissner effect and the 
related problem deals with the multiple structure of non-Abelian gauge theory of 
monopoles (Witten 1983). So far, this problem has not been taken seriously except for 
some efforts macle by Cho in a series of papers (Cho 1980, 1981) to analyse 
magnetic symmetry of restricted quantum chromodynamics. Daniel et al (1980b) 
demonstrated a non-perturbative theory of monopoles in standard SU(5) model of 
grand unified theories and suggested that electric quark confinement in 
quantum chromodynamics is caused by squeezing of chromoelectric flux, in analogy 
with the Meissner effect in superconductivity. Despite the enormous potential 
importance of monopoles and the fact that the formalism necessary to describe them 
has been clumsy and not manifestly covariant, Rajput and coworkers (Rajput and Orl~ 
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Prakash 1976, 1978; Rajput and Joshi 1979, 1981; Rajput 1982; Rajput and Bhakuni 
1982; Rajput et al 1983) have constructed a self-consistent quantum field theory of 
pointlike as well as extended dyons, particles carrying simultaneous electric and 
magnetic charges. The existence of such particles (dyons) has also been demonstrated 
by Julia and Zee (1975) by extending the models of't  Hooft (1974) and Polyakov (1974). 
Furthermore, Witten (1979) has shown that if 0-angle of the world is non-zero, the 
monopoles must have integral or half integral charges (i.e. monopoles are necessarily 
dyons). Pantaleon (1983) examined the recent results of Fairbank et al (1981) about the 
reported evidence of objects with fractional electric charge and that of Cabrera (1982) 
about an event interpreted as monopole and showed that the situation is puzzling if 
both these results are true since it conflicts with either Dirac's quantization condition 
or the colour force confining quarks or exact gauge symmetry as SU(3)c x U(2). If 
monopoles are taken as dyons such difficulties are automatically removed. Keeping 
these facts in view, the study of dyons is as essential as that of the monopoles in grand 
unified theories. 

In the present paper, we have attempted to formulate the topological concept of 
magnetic charge in terms of magnetic symmetry gauge group and then extended it to 
the theory of dyons in Abelian and non-Abelian limits. It has been shown that in the 
magnetic gauge space the gauge field is made of two parts, the "electric" part which is 
not restricted by magnetic symmetry and the "magnetic" part which is completely 
determined by the magnetic symmetry. The magnetic potential of magnetic symmetry 
suffers from Dirac's (1931) string singularity and it is therefore described in terms of 
spacelike potential. As such, it could not describe the fields associated with dyons. 
Singular potential may be replaced by a regular one when recourse is made to the 
duality of topological (magnetic) and isoelectric charges. Hence the restricted potential 
describes the gauge field strength, field equations, electric and magnetic fields and 
equation of motion for dyons. It has also been shown that by incorporating the 
generalized charge ofdyons, the theory presented here yields the results similar to those 
derived earlier (Rajput and Om Prakash 1976, 1978: Rajput and Joshi 1981). 

Choosing a suitable Lagrangian density of dyons in terms of magnetic symmetry in 
non-Abelian gauge theory, the field equations, energy momentum tensor, Hamiltonian 
and momentum densities have been derived for the system ofdyons in a magnetic gauge 
space. It has also been shown that the total linear and angular momentum operators 
commute with the Hamiltonian ofdyonic system and that the total angular momentum 
is made of three parts, the orbital, spin and isotopic spin ones. 

2. Magnetic symmetry and topological charges 

Non-Abelian gauge theory can be viewed as Einstein's theory of gravitation in a higher- 
dimensional unified space P (Cho and Freund 1975) consisting of the four-dimensional 
external space-time M and the n-dimensional internal space G. Let us consider the 
metric gan(A, B = 1, 2, 3 . . . 4  + n) in this (4 + n)-dimensional unified space P by 
introducing n-dimensional isometry group G with its Killing vector fields spanning the 
internal space. More precisely, one can choose the n linearly independent and complete 
Killing vector fields, ~ (i = l, 2 .... n) as (Cho 1982a, b); 

~'~igAB = 0 

where ~ i  is the Lie derivative along the direction of ~i. These n-Killing vector fields 
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satisfy the following canonical commutation relations of the isometry semi-simple 
group G: 

[~i, ~.i] = .Ljk~k" (2) 

The isometry leads to identify P as a principal fibre bundle P(M, G) with M = P/G as 
the base manifold and G as the structure group. Since G acts on the right side of P, the 
isometry group G may be referred to as the right isometry (Cho 1975, 1982a). It has been 
conjectured that the dynamics of magnetic monopole is effectively described by a gauge 
theory based on magnetic gauge group (magnetic symmetry) which has the topological 
meaning. Thus, with this analysis we can define the magnetic symmetry (Cho 1980, 
1981, 1982) as an additional internal isometry H having some additional Killing vector 
fields of generalized gauge theory. These additional Killing vectors are purely internal 
ones and hence commute with the already existing fields gi of G. Let the additional 
Killing vector fields be m, (a = l, 2.. .  k,/¢ = dim. H) where H is the Cartan's subgroup of 
G. Then by definition we have, 

and 

ma=m~(x)g i, (i=1,2,31 

[~i, m,] = 0, 

[m,, mb] = - ccmcm, . J a b  c 

5F mag A ~ = O, 

(3) 

where ~,,o is the Lie derivative along the direction of magnetic symmetry ma. Here 
again the isometry group H commutes with the right isometry G and hence called the 
left isometry (Cho 1975, 1982b). The topological magnetic charge associated with 
monopoles corresponds to the elements of second homotopy group 7~ 2 (G/H). Here we 
consider G as SU(2) Yang-Mill's group of isotopic spin and H as the global gauge group 
of electromagnetic interaction U(1). Thus, 

I~ 2{ G/  H ) --~ g2(SU(2)/U(1)) (4) 

is determined by the second homotopy directly leading to the magnetic symmetry 
gauge group of monopoles in terms of ~'l. Thus, monopoles are described in terms of the 
topological charges. The magnetic symmetry rh given by (3) may also be represented in 
terms of the following column matrix; 

/ m ~ 
m 2 

m 3 

• ttl n, 

(5) 

while for SU(2) gauge degrees of freedom one can rotate the magnetic vector ~ to a fixed 
time-independent direction (say, the third direction of isotopic spin) by a gauge 
transformation; 

(6) o 
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The magnetic symmetry obviously imposes a strong constraint on the connection and 
hence may be regarded as a symmetry of gauge potential. Thus, this gauge symmetry 
defined by (3) restricts not only the internal metric 

~)ij_~ " A B gAB~i ~j 

but also the gauge potential. As such we have, 

(7) 

Drift = 3rift + gBu x tfi = 0, (8 )  

where Bu is the restricted gauge potential of group G and g is the structure constant. 
This condition also implies that for an internal symmetry group SU(N) the magnetic 
symmetry may be described by a single adjoint representation scalar multiplet th(x) 
with 

/~2 = constant (or 1 in general), (9) 

whose little group is H at every space-time point. For SU(2), the restricted potential B~ 
may be given by, 

Bu Adh _ l rh = - x ~2fi, (lO) 
g 

where A. = rh. B., the Abelian component of B u, is not restricted by magnetic symmetry 
condition (8). The restricted gauge potential has two parts, the unrestricted part A. and 
the other part completely defined by magnetic symmetry. We may identify the 
unrestricted part A j, as the electric one and the restricted part as the magnetic one. In 
other words, the gauge potential consists of poles corresponding to electric and 
magnetic charges in non-Abelian gauge theory like Julia-Zee dyons (Julia and Zee 
1975), The gauge field strength Guv corresponding to the gauge potential B. may be 
given as (Cho 1980a): 

Gu~ = ~3.B~ - t3,,B. + gB. x B~ 

= (Fur + H~,.)tfi = F.~ + Hut, 
where 

Fu~ = t3uA ~ - t3,,A~,, 
and 

(11) 

are respectively the electric and magnetic constituents of gauge field strength. The 
magnetic gauge field strength requires an extra magnetic or topological potential. For 
SU(2) Yang-Mills theory, ~ --, (0, 0, 1)defines the colour triplets and hence the restricted 
potential has a dual structure. It describes not only the colour electric charges but also 
the colour magnetic ones. The magnetic counterpart of potential has been defined in a 
series of papers by Cho (1980, 1981, 1982) as; 

, A ( 1 3 )  B u = (A u + Cu)m, 

where C* is the dual magnetic potential having singularity. Thus, the magnetic 

1 
H.v =--rh. (~.rh  x ?vrh) (12) 

O 
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counterigart of restricted gauge theory suffers from the string singularities, i.e. 

H.v = 8.C* - 8,,C* (14) 

contains the Dirac's string singularity and as such, we could not take G.~ and B~ 
respectively as gauge field strength and gauge potential of dyon. Thus, the theory of 
topological charges of magnetic monopoles still suffers from the Dirac's string 
singularity. The form of C* may be obtained in terms of magnetic symmetry; 

sin ~ cos fl 
vh= /s in~sinf l  (15) 

COS 

a s  

I 
C* = - - cos  ~z d~fl, (16) 

g 

where c~ and fl are the Eulerian angles of the rotation in isotopic spin space. This 
potential describes the space-like behaviour while A~, has the time-like structure. 

3. Abelian gauge theory of dyons 

To overcome the above mentioned Dirac string singularity of magnetic potential C*, 
let us first define the dual dynamics ofcolour isocharges. By definition in Abelian gauge, 
we have; 

G,~ = 0vB . - ~,B~ = F~,~ + H,~. (17) 

Let us introduce the electric and magnetic four-currents J ,  and K, respectively as the 
sources of electric and magnetic charges. Then we get, 

Gu~.~ = J .  =/:u~.~ 
and 

Guv,~ = H~v,~ = K u, (18) 

where G*~ -- ~e~po,_,l c:.po is the dual of G,~. Here K s may be referred to as the monopole 
topological current while F ~  and H ~  describe the pointlike behaviour and not the 
extended one. The topological current of the monopole carries the well-known string 
singularity and the space-like behaviour of magnetic potential C* makes it the current 
carried by a charged particle having space-like momenta and hence one cannot add two 
potentials of different kinds. Thus, we must modify the definition of potential B~ in 
terms of two similar types of potentials having time-like behaviour. On the other hand, 
if there is the existence of magnetic monopoles in our space-time world, we must have to 
take their potential time-like one. Furthermore, we remove the string singularity with 
the help of duality transformations 

(E ~ H ,  H--, - E ) ,  (19) 

where E and H are the electric and magnetic fields of our everyday experience. Thus, 
H*~ can be described in terms of the regular potential Cu i.e. the dual magnetic 
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potential, as follows; 

H*~ = c3~C~ - ~,,C~, (20) 

which does not contain any irregular string singularity. As such, we can replace C* by 
C. to describe the monopoles by time-like potential and the resulting theory becomes 
the theory of dyons. Then we get the following sets of Maxwell's equations; 

Guv,~ = F.v.~ = J,,  

6 ,  ~, ~, ~ , = H.,, ,, = K., (21) 

which reduces to the following form in terms of electric and magnetic potentials; 

a~(a~A. - a . A  ~) = J .  

?~(c~C~ - ~uC~) = K,. (22) 

Furthermore, in terms of the dual potential the magnetic symmetry could be regarded 
as the ordinary gauge symmetry of potential Cu. The gauge field strength of dyons in 
terms of two potentials may also be written as follows; 

G.~ = ?.A,,  - ?~,A~ + c~po~PC '~ (23) 

giving rise to the following expressions (Fryberger 1985: Han and Biedenhan 1971) for 
electric and magnetic fields of dyons; 

E = - V ~  - ( 6 A / & )  - V × C ,  

H = - V~b - ( ~ , C / ~ t )  + V x A ,  ( 2 4 )  

where we have used the following electric and magnetic four-potentials: 

{A ~} = {~b,A} and {C ~} = {~b,C}. (25) 

These expressions of electromagnetic fields associated with dyons lead to thefollowing 
form of Maxwell's equations. 

V'E = Jo, 

V ' H = K  o, 
(26) 

V x H = j + (~E/~t), 

V × E = - k - -  ( ~ H / ~ t ) ,  

which can be combined into equations (21) and (22). Equations (21), (22) and (24) are 
invariant under duality transformations of electric and magnetic counterparts. The 
topological charge of monopole is inversely proportional to the corresponding electric 
charge as given by Cho (1980, 1981, 1982) and thus the dyon-dyon system leads to the 
following chirality quantization condition; 

11ij = eig j -- ejy i = n, (27) 

where n has integral and half-integral valucs but its half-integral values are forbidden 
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by the requirement of locality (Rajput and Om Prakash 1978; Dirac 1931). 
The Lorentz force equation of motion for a dyon moving with the four-velocity u ~ in 

a gauge field of B,, may be written as 

f .  = Q6. u (28) 

where Q is the charge of dyon. If we consider the dyonic charge as a complex quantity 
with its electric and magnetic constituents as real and imaginary parts i.e., 

Q = e - i g ,  (29) 

then we may construct the electrodynamics of dyons similar to that described by 
Rajput and coworkers (Rajput and Om Prakash 1976, 1978; Rajput and Joshi 1979, 
1981; Rajput 1982; Rajput and Bhakuni 1982; Rajput et al 1983) by replacing the 
potential, current, field and gauge field strength by generalized ones in terms of 
complex quantities. One can also construct the angular momentum operator for dyon- 
dyon system in terms of the topological structure of magnetic charge. The generalized 
field tensor is then written as 

. ~  = G~ - tG,~ (30) 

and the corresponding field equations are given by; 

(ff uv,~ = J u ,  

fq~v,~ = 0, (31) 

where Ju = J u  - iK u is the generalized current associated with generalized charge of 
dyons. 

4. Non-Abelian gauge theory of dyons in terms of magnetic symmetry 

In order to formulate a non-Abelian gauge theory of dyons in terms of magnetic 
symmetry in a restricted connection space 7~ 2 (G/H), we start from the gauge field 
strength G~v given by (11). In this gauge field strength we substitute the singular 
potential C* by the regular dual potential C u with 

= t?uCv - ~Cu (32) 

and then it does not contain string singularities. The corresponding gauge field strength 
of restricted potential Bu, given by 

Guy = (Fur + H~.)rh, 

describes the gauge field strength of dyons in terms of non-Abelian magnetic symmetry 
~. It satisfies the following identity; 

[D u, D~] = gG~, v x rh, (33) 
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where the nonvanishing components of G,,, satisfying the magnetic symmetry 
requirement (8) are the components of little group H of magnetic symmetry rh. 

The Lagrangian density of the fields associated with dyons may be written as follows 
in terms of non-Abelian magnetic gauge symmetry and Higg's field; 

where 

and 

L = - ±r:.,4 ,,~"~""~ + ½-Duc/)iDUOi - V(dp), 

a b c G°u,. = B°u.~ - B~.~ + geabcBuB ~ 

DudPi = (~uqSi + gB u x tpi 

V(qS) = -- (m2/2)~b 2 + (Z /4 ) ( (b2 )  2 

(34) 

(35) 

(38) 

which gives rise to the following expressions for Hamiltonian and momentum densities; 

l [~aO~(~a -1- 1 ('~a t,~apa TOO = (D°cpi)(Doq~i) + z-" ~o~,- g~p,~ 

- ½Dp(aiDPd)~ + V(ck), (39) 

1 t%'.a f ' jaOj  (40) T°J = (D° qSi)(Do4)i) + ~'~oj~ . 

These Hamiltonian and momentum densities, after integrating with respect to volume, 
yield the corresponding Hamiltonian and momentum operators which satisfy the 
following commutation relation; 

[/{, P] = 0 ( 4 1 )  

or in general 

[P", W] = O. (42 )  

As such, the four-momentum is conserved for a system of Julia-Zee (1975) dyon in terms 
of the non-Abelian magnetic symmetry. Similarly, we can construct the angular 
momentum operator for dyon as; 

J = r × p  

= L + S + I ,  

TU~ = D"cp~DS?~ + 2 ~ # ' f ~  gUVL(l~, v, y = 0, 1, 2, 3), 

with m 2 > 0 leading to the extended structure of dyons in non-Abelian magnetic gauge 
symmetry. The Lagrangian density given by (34) yields the following field equations 
with respect to an independent variation of B u and 4'; 

D~G~,v = -{(Duq)i)y x ~b} = 0, (36) 
and 

D~(DJpi) = - mZc~i + 2(dp)2gbi (Higg's current). (37) 

These equations show that the Higg's field has nothing to do with the covariant 
derivative of gauge field strength but gives rise to the vanishing four-current and 
generates the dyonic current as the bosonic one in terms of Higg's potential and the 
mass of Julia-Zee (1975) dyon. The energy-momentum tensor may be written in the 
following form from Lagrangian density given by (34); 
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where L is the orbital part, S is the ordinary spin and I is the isotopic spin in restricted 
gauge space n2 (SU(2)/U(1)). This angular momentum commutes with the Hamil- 
tonian, i.e. 

[/-t, J] = 0, 

leading to the conservation of angular momentum operator for dyons in restricted 
chromodynamics where electric and magnetic parts of dyons play the role ofisocolour 
charges. 

5. Discussion and conclusion 

From the foregoing analysis it is clear that the restricted potential B u given by (10) has a 
dual structure. It describes not only the colour electric charges of non-Abelian gauge 
theory but also the colour magnetic ones. Magnetic symmetry ~h restricts the unified 
connection space to the second homotopic space g2 (G/H) but it could not restrict the 
colour electric potential. In other words, the topological concept of magnetic 
monopoles as the constituent of dyons arises only due to the appearence of an 
additional internal symmetry i.e. the magnetic symmetry. At this moment one should 
be careful to emphasize two points; firstly, the magnetic symmetry may be used to 
specify the global topology of the gauge fields yielding magnetic charges in addition to 
electric charges. Secondly, the magnetic symmetry inevitably chooses the colour 
direction by selecting the colour electric potentials of the Cartesian's subgroup. The 
colour direction allows us to circumvent the disturbing Schielder's theorem (Schielder 
1981) to define a colour charge without violating the full gauge invariance. Equation 
(35) leads to the current generalized by Higg's field and shows that the dyons have the 

• mass leading to their extended structure in non-Abelian gauge theory. 
Furthermore, in terms of the dual potential, the magnetic symmetry could naturally 

be regarded as an ordinary Abelian gauge symmetry of magnetic potential. In other 
words, we have made here the magnetic symmetry a genuine Noether's symmetry of 
Lagrangian and thus the topological charge can indeed be'viewed as the dual object of 
Noether charge. Moreover, it has been shown by Polyakov (1978) that at a high 
temperature quarks are liberated due to the condensation of chromoelectric vortices. 
This would lead to the squeezing of chromomagnetic flux and therefore to confinement 
of monopoles carrying SU(3)~ quantum numbers. In this case the restricted 
chromodynamics (RCD) would explain the confinement of the colour in quantum 
chromodynamics. In strong coupling limit the dynamical breaking of magnetic 
symmetry could indeed occur which would guarantee quark confinement in quantun 
chromodynamics. In weak coupling limit, however, the magnetic symmetry is not likely 
to be broken since in this limit the magnetic coupling may become too strong to allow 
monopole and dyon condensation for physical vacuum. Then not only the quarks but 
also the monopoles (dyons) become unavoidable as physical states. 

In our forthcoming paper we shall extend this study of magnetic symmetry (dyons) to 
the SU(5) gauge group of strong and electroweak symmetry. 
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