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Abstract. Confinement model for gluons using a 'colour super current' is formulated. An 
attempt has been made to derive a suitable dielectric function corresponding to the current 
confinement. A simple inhomogeneous dielectric confinement model for gluons is studied for 
comparison. The model Hamiltonians are second quantized and the glueball states are 
constructed. The spurious motion of the centre of confinement is accounted for. The results of 
the current confinement scheme is found in good agreement with experimental candidates. 
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1. Introduction 

It has been well accepted that quantum chromodynamics is a prime candidate for the 
theory of strong interactions. This is a nonabelian gauge theory governing the colour 
dynamics of quarks and gluons. The gluons which are the quanta of the colour field 
carry colour charges and they interact among themselves. Evidence for such 
interactions is the very existence of glueballs (the colour singlet bound states of 
multigluons). Thus the study of glueballs and its experimental confirmation is very 
crucial to the validity of quantum chromodynamics. Since these coloured gluons are 
many in number (SU3-octet) the coupled equations obeyed by them are too complex to 
solve simultaneously. However an important desirable feature of any theory describing 
colour dynamics should be the confinement of colour. The only indication for the 
confinement is from the lattice simulations apart from its experimental confirmations. 
Hence to understand the physical reality of its microscopic structure, one has to go for 
phenomenologieal models (De Rujula 1975; Isgur and Carl 1977). 

Here we consider all the eight gluons described by the Yang-Mills field tensor to be of 
equal strength and the coupled nonlinear term in the field tensor corresponds to a 
source. It can be seen that this source in general is a function of the field potentials and 
its derivatives. This source is treated as a colour supercurrent in analogy with 
Ginzburg-Landaus theory of superconductivity. In this picture we consider the gluon 
field as quasi Maxwellian fields. The details are given in §2. As a special case a simple 
confinement scheme for gluons similar to that of relativistic harmonic (vector + scalar) 
potential model (RHM) for quarks (Khadkika r and Gupta 1983) is discussed in de- 
tail in §3. The confined quasigluon modes are obtained in the general frame of 
Lorentz gauge with a subsidiary condition called the oscillator gauge condition 
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(Khadkikar 1985). These confined modes are quantized and the energies are calculated. 
In §4 we obtain a dielectric function corresponding to the source current so that the 
scheme corresponds in line with the dielectric confinement model proposed by Lee 
(1979). The dielectric function that we have obtained is in general non-local and 
inhomogeneous. As the dynamical dependence is neglected the function reduces to that 
of a simple inhomogeneous dielectric medium. The confinement model for the 
quasigluons in such a dielectric medium is discussed in §5. 

The phenomenology of glueballs is described in §6 and the di-gluon and tri-gluon 
colour singlet states are constructed which account for the spurious motion of the 
centre. Finally the parameter is fixed by fitting iota(0-+) 1440 MeV as a di-gluon 
glueball candidate and all other low-lying di-gluon and tri-gluon states are predicted. 
Finally we discuss our results in §7 with the present status of the experimental results 
and compare them with the naive bag model results for glueballs. 

2. Gluons as quasi-Maxweilian field potentials 

For a pure colour gluon field the Lagrangian density is given by the Yang-Mills field 
tensor, 

= - 1/4Fu~F~,~, (1) 

where Ftu~ = fut~ + Gtuv, (2) 

with f~v = ~ c3~, A ~ - ¢3~ A~,, (3) 

and G ~  = g flmn A"~ A" ,  (4) 

the colour indices (1, m, n) carry 1, 2 . . . . .  8 and (#, v) are the four-vector indices. By 
variational principle the equation of motion for the field is obtained as 

1 f l m n A m F n  O~,F~,v + gJ -~ -~v = 0. (5) 

Substituting for F~  from (2) to (4) we get 

O~,ftu~ = , . . . .  ,, . . . . .  - o f  [A  u OuA , + O~,A~, A~ + A u O~,Av - A~, O,AI, 

+ o f . v . , '  ,, t" ,," A~,A~,A~ ], (6) 

9 is the coupling constant; fz=. is the SU(3) structure constant. The right side of the 
equation can be considered as a supercurrent of the colour gluons in analogy with the 
Ginzburg Landaus theory of superconductivity. In an external gluon field the low 
momentum approximation, say, A~ corresponding to the confinement, this colour 
supercurrent is assumed as 

J'~ = ou~atu (7) 

similar to that of the London equation in superconductivity. With this picture we treat 
the gluon field A~ as a quasi-Maxwellian field potentials satisfying the dynamical 
equation 

c3uf~u~ = _ j r .  (8) 
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3. Current confinement model for gluons (CCM) 

In this section we consider the gluon fields in a quasi-Maxwellian theory with a 
confinement current assumed to be similar to that in (7) 

J~ = O~vAv (9) 

where Av = (A, @). 

For simplicity and in analogy with the relativistic harmonic confinement model (RHM) 
for quarks (Khadkikar and Gupta 1983) we choose 

0u~ = - 6u~0u (10) 

and 0~ = 2~6uo - ~2 r 2. (11) 

The Lagrangian density for this quasi-Maxwellian gluons can now be written as 

i i i 2 = -~f~,fu,  +-~O~,vA~,A~ + 2(O~,A~,), (12) 

where f~=O~,A~-O,A~, (13) 

is the quasi-colour gluon field tensor. Here the colour labels are omitted since all the 
fields carry the same colour index. 

From the variational principle, 

6S~  dar dr=0, (14) 

we find the field equation for the vector potential A as 

- V 2 A + 0 A + A = 0  (15) 

with the Lorentz gauge condition 

O~A~=V'A+6b=O (16) 

where the number of dots above the variable represents the order of time derivatives. 
To carry out the quantization in the Lorentz gauge we observe that @ is a dependent 

variable. The conjugate momentum of A is 

P = A+V@ (17) 

and that of @ is 

a = V - A + 6 = 0  (18) 

as given by (16). Consequently all the time derivatives of (18) also vanish, i.e. 

~= #-~ =-V-(A+V@)+0 '@=0.  (19) 

Thus from (17) and (19), we have 
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= (V- P)/0', (20) 

where 0 and 0' are the vector and scalar components of 0u associated with A and • ofA u 
respectively. Eliminating @ from (16) and (17), 

V. A + (V- P)/0' = 0 (21) 

and P = A + V(V. P)/0'. (22) 

In order to derive the Hamiltonian, we regard A and P as independent variables i)ut 
as a function of P through (20). Thus the Hamiltonian 

H = ½~dar [p2 + (V. P)2/0' + 0A 2 + (V. A) 2 - A. V 2 A]. (23) 

The Hamilton's equations of motion for A and P: 

A = OH/OP = P -  V(V. P)/0', (24) 

P = - 3H/OA = V2A - 0A - V(V. A). (25) 

Taking the second time derivatives of A and P, we get 

,~ = V2A - 0A + V[V. 0A - 0'V" A]/0', (26) 

[ i  = V 2 p  _ 0P + [0V - V0'] (V" P)/0'. (27) 

Using (25) the Lorentz condition given by (21) leads to 

V. 0A - 0'V. A = 0. (28) 

This equation with the choice of 0 and O' given in (10) and (11) leads to the oscillator 
gauge condition (Khadkikar 1985) 

IV + ctr]. A = 0. (29) 

It has been seen that the conservation requirement of the induced four-vector current 
also demands the oscillator condition. In terms of oscillator operators defined by 

a = (2ct)- 1/2 (V + ,tr) (30) 

and its Hermitian conjugate 

a t = (2ct)- 1/2( __ V + (xr) (31) 

equation (29) now reduces to 

a -  A = 0. ( 3 2 )  

Similarly the equation for A taking the time variations of the field as exp(- i to t ) ,  
becomes 

(a" a t + a t .  a )  A = to 2 A .  ( 3 3 )  

The scalar oscillator wave function corresponding to this equation is given by 
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~F.,i,. = N.,z [a t. a*] n' Ylm (a*)~Fo, 
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(34) 

3 
~o = [~1/2n-1/2] ~- exp( -½~ 2r2) (35) 

and N.,l = [4rc/2n' !? (2n'+ 21+ 1)!?] 1/2 (36) 

with oscillator eigenvalues 

E.=to2.=(2n+3)~; n = 2 n ' +  1, (37) 

where Y,.(a t) is the solid spherical harmonics. Hence the solution for A can be written 
as 

A = eW.tm, ( 3 8 )  

e represents the direction of polarization of the field A. In the oscillator space, we 
choose 

e loc iaxa*;  e 2 o c a x ( a x a t ) ;  e3oca *. (39) 

Then the oscillator gauge condition classically gives the third component of A 

A 3 = 0 .  (40 )  

Then the remaining transverse components of the fields are given by 

1 1 • at)~F.sm e x p ( -  iosnt), (41) AnJ,n = N.fl(a x 

A2s~ = N 2 j [ a - a t ( 1 / a  • a*)a. a]  ~ .  + 1sin exp (ico.t) (42) 

and the corresponding conjugate momenta 

P.sml _- - M~s(a x a t) ~F.s,. exp (leo.t), (43) 

2 2 • P.s,. = Mnfl [ a -  a*(1/a • a*)a- a] ~t'. + xs,~ exp (ico n t), (44) 

and p3 = V3 [ (1 / (0 ' -  V2))V • A 2 ], (45) 

where the normalization constants are 

N~I = [J(J  + 1)2~ 1/2(2n + 3) 1/2 ] - 1/2, 

2 _ [J(J  + 1)/(n + 1). 2~ ~/2 (2n + 3)1/2 N.s - 
(1 - J(J  + I)/{2(2n + 3Xn + 1)})] - 1/2, 

M~ s = [~ 1/2 (2n + 3)l/2/2j(J + 1)] 1/2, 

2 [~x/2(2n+3)l/2(n+3)/{2J(J+ 1)} M . j  = 

(1 - J ( d +  1)/{(2n + 3)(n+ 1)})] ~/2, (46) 

where J = L + S  is the total angular momentum of the fields, L is the angular 
momentum and S is the spin operator. 
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For quantization we expand the quasi-gluon fields in terms of the above eigen basis 
to get the gluon energy in terms of the frequency 09. 

A =  Z , A.s M + C.sMa A.SM]. (47) 
nJM~ 

where 2 refers to the type of the mode (magnetic/electric). C.jMa and ctnJMA a r e  the 
annihilation and creation operators satisfying the commutation relations 

and 
[C.sM~, Q½'M'a'] = 6.., aSS' 6MM' 6~a, 

_ t [C.sM~, C,,s,u,~,] - [C.sM~, Ct.'j'M'~ '] = O. 

The condition on Aa here is now replaced by 

A31 physical) = 0 

and that on p3: 

(48) 

(49) 

and 

4. Expression for a dielectric function 

Classically Maxwell's displacement current D can be written as 

D = E + P ,  (53) 

where E is the electric field causing a polarization and P is the polarization vector 
current. For a source-free case 

V. D = 0 (54) 

V x B -  OD/Or 

Thus we get the induced polarization charge 

p =  - V ' P  

(55) 

(56) 

H= Z (51) 
nJMA 

From (37) the frequency 

~0. = (2n + 3) 1/2~ 1/2, (52) 

where ct.SM C.JM is the number operators in the quantum (nJM) of the modes 2(= 1, 2). 
The low-lying digluon and trigluon glueball states are calculated in § 6. 

[ p 3 _ V 3 (1/(0' - V 2) V- .~ 2 ] I physical ) = 0. (50) 

However the Hamiltonian is independent of p3. Finally the Hamiltonian from (23) 
becomes 
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and the corresponding induced polarization current density 

J = 0 P / 0 t .  (57) 

Now considering the current J defined in ~j2 and 3 as a polarization current in an 
external gluon field A, then 

Jr = (OP/Ot; - V. P), (58) 

P =  -J/i09, (59) 

from (9) to (12) 

P =  -OA/i09 (60) 

using the expression for E 

E = i09A - V~, 

and V" E = i09 V" A -  V2~. (61) 

Using the Lorentz condition, we eliminate A from (61); 

V. E = - co 2 ~ _  V2~. (62) 
Hence, 

= - [1/(09 2 + V2)] V" E. (63) 

Then the equation for P reduces to 

P = (0/09 2) [E + V~]. (64) 

Substituting • from (63) 

P = (0/092)[E - V1/(09 2 + 172)7 • E ]  (65) 

= ( 0 / 0 9 2 ) [ 1  - -  V 1/(09 2 + V2)V • E l .  (66) 

Thus from (53) 

D = e(O, V)E, (67) 

where the dielectric function is now a non-local operator given by 

e(0, V)-- 1 + 0/09 2. [ 1 - V { 1/(09 2 + V2) } V ]. (68) 

Thus to get an identical confinement scheme as the CCM one has to use the dielectric 
function 

e(r, V) = 1 - ~2r2/~o2 • [1 - V{ 1/(o9 2 + V2)}V]. (69) 

5. Dielectric confinement model for gluons (DCM) 

Here we consider the dielectric function obtained in equation (69) of §4 as a 
confinement medium for gluons, as proposed by Lee (1979). Neglecting the non-locality 
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this function reduces to a simple inhomogeneous function, 

e(r) = 1 - a2r 2, (70) 

where a is a non-zero constant parameter and r is the spatial coordinate. For any value 
of r 4: O, e(r) < 1 gives the antiscreening property as required by QCD vacuum (Lee 
1979); however, when r --* O, e(r) --* 1 corresponds to the asymptotic freedom. And as 
r --. 1/a, e(r) ~ 0 corresponds to the perfect dielectric nature of the medium; therefore 
the colour electric field is pushed inside the region leading to confinement. The 
parameter a can be chosen in this limit. In the case of bag models e(r) is taken as a step 
function with e(r) = 1 inside the bag and e(r) = 0 outside the bag surface. Here we have a 
smooth radially varying function avoiding such sharp transition. 

In this quasi-classical macroscopic picture of the medium, we have to solve 
Maxwell's type of equation to get the quasi-gluon fields, characterized by the quasi- 
gluon electric field E and the magnetic field B; 

V × E = -OB/Ot ,  

V . B = O ,  

V x B = OD/Ot, 

V. D = 0, (71) 

where D = e(r) E. (72) 

These field strengths can be expressed in terms of the quasi-gluon potential (A, ~) as 

E=  - O A / O t - V O ,  

B = V x A. (73) 

Assuming the time variation of the field as exp (-itot),  we obtain the stationary wave 
equation for A: 

VZA + to 2 ~ (r)A = V(V. A ) -  ito e (r)V*. (74) 

Because of the spatial dependence of the e(r), equation (74) for A cannot be made 
homogeneous as in the case of bag model cavity eigenmodes for A (Kuti 1977). To 
obtain a homogeneous equation for simple eigenmodes we require a gauge condition 
such that. 

v(v .  A ) -  ito e(r)VO = 0. (75) 

Obviously, the Lorentz condition cannot provide this requirement for a general ~. The 
above condition leads to the Lorentz condition as r --* 0 (asymptotic regions). As these 
quasi-gluons move away from the asymptotic region to confinement region where 
r ~  1/a, 

V. A = 0. (76) 

Then in this region the two transverse eigenmodes can be defined as 

ATe=Lqt... (77) 
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and 
A TM ----- V X L W.l,., (78) 

where TE and TM represent the transverse electric and magnetic modes. L is the 
angular momentum operator. W.t., is the solution satisfying the homogeneous scalar 
wave equation given by 

l 1 2 2 1+~ 2 2 • ,l,.=N.l(~,r) e x p ( - - ~ . r  )L(._o/2(ot.r )Y~,.(O, dp). (79) 

The size parameter ~. is 

~. = (aog.) 1/2 , (80) 
where 

o9. =(2n + 3)a. (81) 

U.(Z) is the associated Laguerre polynomial. The normalization factor is 

N., = [2~. 3 ( n -  1)/2) !/4n ~(n + 3 + 1)/2] 1/2. (82) 

In terms of the vector spherical harmonics 

ATOM = (2o9. e(r))- 1/2 [(J/(2J + 1)) 1/2 R.s + a(r) Yss+ 1M(~) 

+((J+l)/(2J+l))l/2R.s_l(r)Yss_xu(~)]exp(-iog.t) (83) 
with parity 

and 

with parity 

e = ( - 1 ) '  

A.r~M = (2o9.~(r))- x/2 R.s(r) Yssu(~) exp ( -  iog.t) 

(84) 

(85) 

P = ( -  1y ÷ 1 (86) 

and the vector spherical harmonic satisfies 

S Yule* YIsmd~=OU'6JJ'6MM', (87) 

where J = L + S  (88) 

and j2 Y¢~'ht~n ----J(J. + 1) YISM(t]); Jz Yt.tM(~) = M YISM(t]). (89)  

The Hamiltonian for this quasi-gluon field is given by 

H =½Sd3r [E" O + B 2]. (90) 

This Hamiltonian is second quantized as in § 3 using the eigenmodes defined in (83) and 
(85) to get the energy of the confined quasi-gluons in terms of its frequency. 

6. Construction of the glueball states 

The fact that no coloured objects are seen free in nature allows only colour singlet states 
to exist with finite energies. In addition to q~, qqq states one expect the colour 
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singlet states of colour gluons also to exist (Jaffe and Johnson 1976). Such states are 
referred to as gluonium or glueballs. Strong experimental evidences for such particles 
exist (Sharre et al 1980; Lindenbaum et al 1985; Konigsmann 1986). Construction of 
digluon and trigluon colour singlet low-lying glueball states in the case of CCM and 
DCM is discussed here. 

The lowest gluon modes we obtained are j ec= 1 - -  for the transverse magnetic 
(TM/E) and jec= 1 ÷ - for the transverse electric (TE/M). J is the total angular 
momentum of the gluon state, P is the parity and C represents the colour charge 
conjugation. Since glueballs are bosonic hadrons the total wave function including 
colour should be symmetric. The colour part is governed by the combinations of Gell- 
Mann's 2-matrices as 

[21, 2 . ]  = 2~mn2,, 

{2,, 2,.} =--~6,m + 2d,,.~2., (91) 

where (Iron) are the colour indices, f~m~ are completely antisymmetric in its indices while 
dt,.~ are completely symmetric. For digluon states the colour coupling is of the form 6t,~ 
giving C = + 1, whereas in the case of trigluon states the colour symmetric coupling of 
the type dtm gives C = - 1 and that of the colour anti-symmetric coupling of the type 
ftm gives C = + 1. The colour singlet glueball states with orbital, spin and colour 
symmetries can have the following combinations: 

Orbital Spin Colour 

S AS AS 
S S S 

AS AS S 
AS S S 

(MS/MAS MS/MAS)s AS 
(MAS/MS MS/MAS)A s AS 

where S and AS refer to symmetric and antisymmetric respectively while MS and MAS 
refer to mixed symmetric and mixed antisymmetric respectively. 

Accordingly low-lying states of the digluon systems are obtained as E2(0 + +, 2 ÷ ÷), 
MZ(O + +, 2 ÷ +) and EM(O- *, 2-  ÷). And the low-lying states of the trigluon systems 
with colour coupling of the type dtmn are 1 ÷ - (- -) 3 ÷ - ( -  -) and the colour coupling of 
the type fz,~ are 0 + + ~- +) for M 3 (E3) combinations. The wave functions corresponding 
to these states are given by 

J=l ,  tP~=3, 1 =dlmgt--~ 3~1-~, 

~P: = o =fzm. : = o (92) ~123 (I)123, 

where Z123 and @123 are the spin and orbital wave functions respectively. The bar over 
the indices represents symmetric and below the indices represents the antisymmetric 
combinations between the particle indices. A detailed account of the M 3 and M2E 
glueball states is given by Senba and Tanimoto (1984). Similarly we have obtained the 
low-lying M E  2 glueball states as ((3 + +, 2 + +, 1 + -, 3 + -) and M2E glueball states as 
(0- +, 2- +, 1 - -, 3 - - ). The calculations of hyperfine splitting of these state are beyond 
the scope of this paper. 
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The spurious motion of the centre of the glueball containing A-gluons should also be 
taken into account while constructing the glueball states. This can be done in a 
simplified manner by keeping the centre always at the lowest possible eigenstate. 
Finally the intrinsic energy of the gluon in A-gluon system can be obtained as follows. 
Let particles 1, 2, 3 . . . .  A are confined around a common centre C at a distance R. 
r l , r2 . . . .  r A are the distances of each particle measured from the centre, x l, x2 . . . .  X A 
are the position vectors of these particles. Then 

A 
R = E 

i=1 
R + ri = xi. (93) 

Now the oscillator type of equations obtained in §§ 2 and 3 in the relative coordinate 
with respect to the centre of confinement can be resolved in terms of R and xi using (93). 
In the case of CCM 

where 

and 

[--i=~l V2"~" i=~ 1 ot2x2-(- V2+a2R2)]tP-co2W, (94) 

(95) 

E c = (2N + 3)a. (96) 

We construct the states with the centre of confinement in the lowest oscillator state 
E c = 3ct. Assuming an equal contribution of  EC/A due to each gluon at the centre and en 
is the intrinsic energy of each gluon, then 

where 

Thus 
e~ + ECo/A = (2n + 3) ~. 

e ccM =(2n + 3 -  3/A) 1/20~ 1/2 

Similarly in the case of DCM, 

end TM = (2n + 3 - 3/A)a. 

(97) 

(98) 

(99) 

We calculate the energies of low-lying digluon and trigluon states in DCM and 
CCM. The expressions for the gluon energy quanta and the intrinsic gluon energy 
expressions for the lower modes are given in table 1. The single parameter a in DCM 
and a 1/2 in CCM are calculated by fitting the iota (1440 MeV) 0-  + state as a digluon 
glueball. Without considering the spurious motion of the centre and not subtracting the 
zero point energy, the glueball energies become just addition of the respective ogn's. In 
this case the DCM parameter a and the CCM parameter ct 1/2 are obtained as 180 MeV 
and 363 MeV respectively. The energies are tabulated in table 2. While considering the 
spurious motion of the centre and removing the average zero point energy the 
parameters are obtained as a = 288 MeV and a 1/2 =466 MeV respectively by fitting 
the same iota (0 -+) as a digluon state, using the intrinsic energy expression 

(lOO) 



50 S B Khadkikar  and P C Vinodkumar 

Table 1. Energy expressions for the low-lying gluon states. 

D C M  C C M  

Quanta 
n co,, = ( 2 n + 3 ) a  e , =  ( 2 n + 3 -  3/A)a oJn=(2n+3)l/2al/2 ~,,= ( 2 n + 3 -  3/A)1/2~ 1/2 

A = 2  A = 3  A = 2  A = 3  

0 3a 

1 5a 

2 7a 

3 9a 

3 
-a 

2 

7 
-a 

2 

11 
--a 

2 

15 
--a 

2 

Table 2. Low-lying glue-ball energies without considering the spur- 
ious motion and without subtracting the zeropoint energy. 

Coupled jpc D C M  C C M  

modes (MeV) (MeV) 

EE 0 + + 2 + + 1080 1257 

EM 0- + 2 -  + 1440 1440 

MM 0 + + 2 + + 1800 1623 

EEE 0-  + 1- - 3- - 1620 1886 
EEM 0 ++ 2 ++ 1 + -  3 + -  1980 2069 

EMM 0 -  + 2 -  + 1 - - 3 -  - 2340 2251 

MMM 0 + + 1 + - 3 + - 2700 2434 

and taking the possible linear combinations of the low-lying levels to ensure the centre 
of confinement remains at the ground state. The calculated energies for the digluon and 
trigluon low-lying states are given in table 3, comparing with the naive bag model 
results (Kuti 1977) and some of the experimental candidates. 

7. Comparison with experiment and discussion 

The lightest glueballs are expected to have masses ranging from 1-3 GeV and spin- 
parities 0 + ÷, 0-  + and 2 + +. Observations of such particles are very crucial to QCD. 
This mass range is accessible in radiative J/~F decays and these states are expected to 
dominate this decay. The first candidate iota (1440 MeV) 0-  + was found by Mark II in 
the decay mode l - - , K  ° K + -  ~ - +  (Sharre et al 1980). Being an oldest glueball 
candidate we fit our parameters and predicted all other glueball states which are found 
to be in good agreement with other existing candidates (see table 3). Although the latest 
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Tabb 3, Calculated low.lying glue.ball energy sta'tes in DCM and CCM with removal of the 
spur ious  m o t i o n  of  the centre  in c o m p a r i s o n  with bag m o d e l  results (Kuti  1977) and  with 

exper imenta l  candidates .  

Calculated  energies  Experimental 
(in MeV) candidates  

Coupled 
m o d e s  jpc  DCM CCM BAG jrc Energy (in MeV) 

EE 0 ++ 2 ++ 864 1137 1796 0 ++ 1240(g,) 
EM O- + 2- + 1440 1440 1446 O- + 1440 (1) 
MM 0 + + 2 + + 2016 1703 1096 2 + ÷ 1700(0) 
EE£ 0 -  + 1 - - 3 -  - 1728 1971 2694 

EEM 0 + ÷ 2 + + 1 + - 3 + - 2304 2246 2344 2 + + (2120, 2220, 2360) (gt) 

EMM 0 -  + 2 -  + 1 - - 3 -  - 2880  2489 1990 - -  - -  
MMM 0++1 - "3 +- 3456 2720 1644 -- 

experimental results of J/~P decay give very strong evidences for the state iota 0 = + 
(1459+5 in Mark III) to be gluonic, the present situation is such that it is not 
unambiguously possible to identify the state due to the strong mixing of the q~ 
pseudoscalar mesons in this energy range (Konigsmann 1986). The other glueball 
candidate which showed very good agreement is the 0 2 + + (1700 MeV) discovered by 
the crystal ball group in the channel J /~ / - ,  3,rlrl (Edwards et al 1982). A.detailed 
analysis of this state conclusively showed it to be a gluonic meson. But its decay 
patterns cause slight problems and hence these states have to be thoroughly studied 
before they are confirmed. Another glueball candidate is the three resonances gr(2120), 
0~.(2220) and g~(2360) with J rC=2+ + obtained in the reaction rc-P~c~c~n which 
breaks down the OZI suppression. The analysis of these resonances as a three-gluonic 
combinations explained all their features in a clear-cut and simple manner by 
Lindenbaum (1985). Some recent differences regarding the degree of OZI forbiddeness 
of this reaction have been resolved by them and it is concluded that they are produced 
by glueball and strongly argued that alternative explanations are incorrect and do not 
fit the experimental, facts (Lindenbaum et al 1985). Our results for the 2 + + trigluon 
state in this energy range are obtained from the EEM coupled modes whose energy is 
very close to the average energy of the Or resonances (2233 MeV). The other candidate 
is the g~ (1240)0 ++ obtained in the reaction ~:-p~K°K°n  (Etkin et al 1982). The 
characteristics of this state satisfied that expected by a digluon state. This state shows 
poor agreement with our results, when the zero point energy is subtracted from the 
energy quanta. But it is in good agreement with the CCM lowest glueball energy 
(table 2) without the correction due to the spurious motion of the centre. However, all 
other states are in good agreement with the experimental candidates only when the 
spurious motion of the centre is taken into account. Thus, as in the case of RHM, the 
success of CCM is also closely linked with the accounting for the spurious centre of 
motion. The DCM results are not satisfactory even though the EEM 2 + + state is dose 
to gr. The discrepancy as seen from table 3 between the CCM and the naive bag model 
energies of the coupled modes is due to the fact that the lowest gluon energy state in 
our case is the electric mode with l=0,  J =  1- state while that of the bag 
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model is the magnetic mode with l=  1, J = 1 +. Most of the other potential models also 
provide the l = 0 solution but they are neglected for massless spin-1 fields. We feel that it 
will be incorrect to neglect such solutions in phenomenological models like DCM or 
CCM where the inhomogeneous medium may provide an effective mass to the field as 
the interaction grows when it moves away from the 'centre of confinement'. The 0~v 
tensor in §2 and then in §3 can be considered as a dynamical gluon mass for low 
momentum modes (Celenza and Shakin 1986). A new gauge condition named the 
oscillator gauge obtained in §3 is another feature of our model which helps us to get a 
consistent confinement modes similar to RHM. This gauge is found to be a linear 
combination of the Coulomb gauge and the axial gauge. 

The non-local dielectric function obtained in §4 corresponding to the CCM is 
momentum-dependent and the asymptotic freedom at lower distances or at high 
momentum transfer is built in it. There are indications from QCD about the 
momentum dependence for the dielectric function (Baker et al 1983) for confinement 
models. It remains to be seen how exactly the nonlinearity of the QCD can be viewed 
through phenomenological models with a proper gauge condition. And also interested 
to see the link between the description of the gluon condensate and the dielectric 
medium. There are much more low-lying glueball states of which very few are the 
experimental candidates. It is very crucial to investigate to distinguish qF1, qFlg, gg and 
ggg states among the vast experimental data for the exotic states in the energy range 
1-3 GeV. It is also very important to see how these states lead to the understanding of 
the strong interaction between nucleons at a more fundamental level. 
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