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Resistivity of metallic systems with a strong dynamic disorder 

V F GANTMAKHER,  G I K U L E S K O  and V M TEPLINSKY 
Institute of Solid State Physics, Academy of Sciences of the USSR, Chemogolovka, USSR 

Abstract. If the static disorder in a system is increased the conductivity and the electron mean 
free path decreases to the limit where it reaches the Ioffe-Regal criterion. In this paper 
experimental results are presented which show that dynamic disorder (produced by electron- 
phonon interaction) can produce similar effects as static disorder. In certain metallic glasses it 
has been found that when the resistivity as a function of temperature reaches a critical value 
(almost equal to the maximum metallic resistivity value) the TCR changes from positive to 
negative values. 
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1. Introduction 

In accordance with the known Ioffe-Regel criterion the electronic mean free path, I, 
cannot be shorter than the electron wavelength. When applied to the metals with the 
Fermi momentum K~ this means that 

I > lmi n ~ 7~/K F. (1) 

The metallic systems with I approximating lmi n are extensiv¢!y being studied in the last 
few years due to the progress achieved in the technique of producing amorphous alloys. 
Mostly the small mean free path I is the consequence of the static disorder, i.e. random 
arrangement of atoms at low temperatures. On the other hand, the smallest possible 1 
can also be obtained in some cases in a perfect crystal by increasing the temperature T, 
i.e. by introducing the dynamic disorder. 

2. Comparison between static and dynamic disorders 

Let us refer to the plane (7~ hlz) with the Fermi energy e r on both the axes as a 
characteristic scale (figure 1). The condition of the degeneracy of the electron gas 
T < er, along with the uncertainty relation 

Ae ~ ~/~ < ~r = h2K2/2m (2) 

which isolate a square in this plane (criteria (1) and (2) actually are equivalent, differing 
in the numerical factor n/2 only). The formula for the resistivity 

p = m/ne2z = hKr/neZl, (3) 
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Figure 1. A diagram in (T, h/¢)-plane illustrating applicability of the Boltzmann equation. 

enables us to plot one more scale along the ordinate. Substituting into (3) the electron 
density n = va-  3 (v is the number of free electrons per atom, a is the mean interatomic 
distance) and Kr = (3n2n) 1/3 we obtain 

p = (3~2) - 1/3(h/e2)(a2/v2/31). (4) 

Substituting the value of lint n from (1) or (2) into (4), we get 

p = (400 + 600)v-1/3 #~'cm. (5) 

The dependence of p on v being weak, we can assume v = 1 for all metals. Hence we 
obtain the resistivity scale shown in figure 1. 

Transport properties of metals with a sufficiently large electron mean free path I are 
accounted for by the noninteracting gas model based on the Boltzmann equation. This 
approach obviously is applicable inside the lower triangle in figure 1, where the electron 
energy uncertainty due to scattering is smaller than the temperature broadening of the 
Fermi distribution. However, this description is used sometimes in the upper triangle 
Tz < h. For example, shifting along the ordinate we reach a region, where the Ziman 
theory developed for the liquid metals is used. The wave functions in this theory are 
considered to be plane waves, and their scattering by a random potential is calculated 
in the Born approximation (Faber 1969). The success of the Ziman theory was 
conditioned, as a matter of fact, by a high electron density. The screening of the random 
potential of the ions is so strong that even in the absence ofthe long-range order the 
quantity l remains several times larger than the electron wavelength K ;  1. That the 
quantity I can really be large in liquid follows from the values of the resistivity of pure 
liquid uni-, bi- and tri-valent metals (Faber 1969) that do not exceed 40/~f~.cm. 

To the alloys with the resistivity of p > 100/150 #f&cm, Ziman's theory is not 
applicable. Then the empirical rule of Mooij (1973) should be used, the sign of the 
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temperature coefficient of the resistivity depends on the p value. It is to be emphasized 
that the applicability regions of the Ziman theory and the Mooij rule do not overlap. In 
particular, the negative sign of the temperature coefficient of resistivity of bivalent 
metals described by Ziman theory contravenes the Mooij rule. 

If the resistivity of an alloy were p ~> 500 #f~-cm at v ~ 1 (n ~ 1021 - 1022 cm -3) it 
would mean that l < lmin. Such an alloy would be expected to undergo the Anderson 
transition into the dielectric state. However, the amorphous alloys consisting of 
"metallic" atoms with weakly bound valence electrons never have the resistivity larger 
than 400 #fl.cm. On the other hand, there are no examples of the Anderson transition 
in metallic systems with n >~ 1020 cm -3. Both facts seem to be the result of screening, 
that self-consistently decreases the amplitude of the random potential to a level which 
ensures the fulfilment of inequalities (1) and (2). 

Thus, the problem of the Anderson transition near the upper side h/T = ee of the 
square in figure 1 proves to be closely connected with the screening, i.e., in the final 
analysis, with the electron-electron interaction. As for the latter, in the upper triangle 
T~ < h, it is affected by the elastic scattering; during the interaction time h/T the 
electrons go through many collisions with scatterers (impurities or phonons) which 
determine the value of z. 

In principle, the upper side of the square in figure 1 can be approached by means of 
the electron-phonon interaction. The Grilneisen curve p~(T), describes in terms of the 
kinetic equation the resistivity caused by the phonon scattering. At temperatures above 
the Debye temperature 0 it approaches the linear dependence 

p= r (7">> e). (6) 

According to the order-of-magnitude estimate, for a typical metal with KF ~ a-  1 and 
deformation potential D ~ ~ ~ e2/a the asymptote is just the diagonal h/z= T of the 
square. Because of numerical coefficients, it may lie in reality either below (curve I in 
figure 1) or above the diagonal (curve 2). Curve 1 crosses the upper triangle only at low 
temperatures. In this domain ! and z are controlled by the elastic impurity scattering. It 
is known that under these conditions the behaviour of the electron-electron (Al'tshuler 
and Aronov 1979) and electron-phonon (Schmid 1973; Al'tshuler 1978) scatterings 
changes. At T ~> 0 the scattering by phonons is quasielastic and in this sense resembles 
the scattering by impurities. Therefore the physical ideas forming the basis of the results 
of Al'tshuler and Aronov (1979), Schmid (1973) and Al'tshuler (1978) are also seemingly 
applicable for curve 2 at high temperatures. We mean here the change in the probability 
of the electron-electron scattering occurring because of the diffusion of one electron in 
the field of another, the appearance of a density of states extremum on the Fermi level 
(Al'tshuler and Aronov 1979) as well as the change in the probability of scattering by 
long wavelength phonons with the wave vectors q ,¢ ! - 1 (Schmid 1973; Morton et al 
1978~. 

It is clear that if the curve p(T) is situated in the upper triangle, the resistivity increase 
is to be limited with increasing temperature. This problem--designated as the problem 
of resistivity saturation--became the subject of numerous investigations after the 
publication of the paper by Fisk and Webb (1976) who connected for the first time the 
behaviour of the temperature dependence of the resistivity observed in Nb3Sb and 
Nb3Sn crystals with the Ioffe-Regel criterion. Since then a rather rich experimental 
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material has been gained (Sunandana 1979; Lawson 1985; Mori et al 1981; Nedellec et 
al 1985) which shows that the tendency to saturation is always present when the mean 
free path of carriers approaches to limit (1) (Gurvitch 1983). 

Since the velocities of thermal motion of atoms are much lower than the electron 
velocities (static and dynamic disorders appear similar to an electron). However, when 
the disorder is dynamic the electron distribution function is broadened by the 
temperature. 

3. Experimental approach to the dynamic disorder problem 

The experimental study of the problem encounters some complications. Since the 
experiment is carried out at high temperatures and the electron structure of metals is 
complicated it may happen that the observed deviations of p(T) from the linear 
dependence (6) are due to specific peculiarities of the electron spectrum of the material 
involved. One can imagine, for example, a simple semiconductor effect of the increase of 
the carrier density due to the excitation onto the Fermi level of electrons from a 
completely filled band. Along curve 2 it is the quantity h/z and not T that first becomes 
equal to the excitation energy. This also should affect the resistivity (Chakraborty and 
Allen 1979). As a matter of fact, the resistivity has to change, when Tor h/z comes up to 
any characteristic energy describing the electron spectrum (such as the width of the 
peak in the density of states of A-15 superconductors (Cohen et al 1967); the energy of 
the s-d hybridization (Weger et al 1984 etc.). 

It is difficult to consider these complications because we do not normally know the 
electron spectrum sufficiently well. This determines the strategy of the experimental 
studies of the resistivity saturation. On the one hand, this effect has to be searched for in 
various classes of materials and, on the other, one has to look for extra variables that 
could have influence on the limit value of the resistivity. 

It is seen (Fisk and Webb 1976; Morton et a11978; Sunandana 1979; Moil et a11981; 
Gurvich 1983; Lawson 1985; Nedellec et ai 1985) that resistivity saturation takes place 
in rather different materials. Particular attention should be drawn to the fact that the 
effect is observed in InsBi~ (Moil et al 1981) containing no atoms with unfilled d-shells. 

The present paper presents additional experimental data obtained on (i) Cu-Zr 
alloys in the crystalline state; for some compositions the p(T) dependences exhibit not 
only saturation but even a maximum; (ii) on high quality WO2 single crystals with a 
large anisotropy of p. 

4. Alloys Cu-Zr (Gantmakher and Kulesko 1985) 

The samples were produced by recrystallization of an amorphous ribbon (the accuracy 
in the composition determination was about 2-3%). Measurements were carried out 
on strips of dimensions 3.5 x 25 mm 2 using d.c. method. The results of measurements 
are shown in figure 2 for three alloys of different compositions. Crosses stand for the 
values obtained before crystallization of the amorphous ribbon, circles after crystalliz- 
ation, the open and solid circles corresponding to different cycles of measurements. 

All the known data on the electron structure of alloys of the system Cu-Zr (Ching 
et al 1984) give us no reasons to attribute the existence of a maximum in the two upper 
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Figure 2. Resistivity of three Cu-Zr samples with different Cu content. 
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Figure 3. Temperature dependence of resistivity of WO2 samples of different orientation. 
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curves to any peculiarity of the dispersion law in copper-rich alloys. At the same time 
we see correlation between the existence of a maximum and the change of p during 
crystallization. The maximum is observed only when p falls down during crystalliz- 
ation insignificantly, i.e. when the dynamic disorder is as effective as the static one. 

In the above section we have affirmed that the amplitude of the scattering potential 
decreases self-consistently thus preventing localization. In our opinion, it is possible to 
pass over this affirmation using the two-band model of electron spectrum. The carriers 
in one of the bands may become localized whereas in the second band they may remain 
delocalized thus securing the conservation of metallic conductivity. Then the existence 
of the maximum could be explained reasonably well. Let both s- and d-electrons be 
present in the alloy. Starting with room temperatures the d-electrons are in a "limiting 
regime" l ~ a. If the source of scattering were static disorder, the decrease of resistivity 
with the temperature increase could be interpreted in terms of thermally activated hops 
of localized carriers. A variant of these speculations is believed to be valid also for 
localization induced by dynamic disorder. Then we have to admit that phonons 
strengthen localization at low temperatures and weaken it at high temperatures. 

The proposed explanation implies coexistence of localized and delocalized state at 
the Fermi level. This contradicts Mott's postulate (Mott and Davis 1979). 

5. Oxide W O  2 (Gantmakher et al 1986) 

Samples in the form of sticks were cut from single crystals grown by the vapour 
transport. They were about 2-4 mm long and 0.3 x 0.4 mm 2 across. The crystal 
orientation was determined using the x-ray technique. The residual resistance did not 
exceed 1-2% of the room resistance and could be neglected. The resistivity of WOe is 
anisotropic. The diagonal components of the resistivity tensor written down in the 
main axes at room temperatures are Pl = 50 #II.cm; P2 = 60 pf~.cm; P3 = 180 #fFcm. 
The temperature measurements have shown that in some directions resistivity of WO2 
exhibits a tendency to saturation while in others it does not. This is illustrated in 
figure 3. The experimental curves p(T) are plotted for the directions where Proom has its 
maximum and minimum values. 

For quantitative interpretation of results we tried, as usual, to extract from the 
function p(T) an "ideal" part described by the Boltzmann equation. The difficulty is 
that even for this ideal part the analytical expression for an arbitrary electron and 
phonon spectra exists only in the asymptotical form, while the analytical expressions 
for high-temperature corrections, which are of interest for us, are not known at all. Let 
us consider in detail the quantity Pid- In the isotropic model with the spherical Fermi 
surface and Debye phonon spectrum the dependence Pid(T) is described by the 
Griineisen function. Note that at T= 0 the value of this function is still 6% smaller than 
that of the asymptote (6). So the latter can only be used beginning with T > (1.5 to 2)0. 
For the isotropic model Pid(T) is really known within the whole temperature range. 
However, if the Fermi surface consists of several isolated closed sheets and the phonon 
spectrum has optical branches the Griineisen function becomes very complicated. In 
both cases a specific temperature 0o appears at which new processes start: transitions 
between sheets or scattering by optical phonons. At T >> 0, 0o asymptote (6) is still valid, 
but at low temperatures it is impossible to calculate pia(T) without a detailed 
knowledge of the spectra. In WO2 the dependence Pid(T) is certainly more complicated 
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Figure 4. Correlation between coefficients ~ and # in the expression p=c tT+BT  z which 
describes the WO2 experimental results. 

than in the isotropic model. It is difficult to say whether the complications are caused by 
the optical phonon scattering or by interband transitions--in all likelihood both 
factors are responsible. However, it became clear that the Griineisen curve could not be 
used for description of p~d(T) in WO2. Therefore in the analysis of the curves we have 
only used the data for temperatures T > 700 K assuming that in this region P~d "" T. 
Note that the residual resistance of our samples at these "temperatures was always 
smaller than 1% of the total and obviously could be neglected. 

In all our experiments the high-temperature deviations of Pid(T) from a straight line 
were comparatively small. Therefore it might be worthwhile assuming that the 
correction p--pid(T) is small to write it in the form 

p-pi,l=flT t, l> 1. (7) 

In principle the curves p(T) for various directions of the current with respect to the 
crystal axes could be similar differing only in the scale along the p-axis, i.e. # ,-- ~. This 
would be the case, for example, if the deviation ofp from Pid were the result of increase of 
carrier density. Our measurements show, however, that in WOe an "enhanced 
anisotropy" is realized: the anisotropy of the correction (7) is larger than the anisotropy 
of Pid itself (see figure 4). Since the sign of the high-temperature correction is negative, 
the "enhanced anisotropy" of the correction means a decrease in the anisotropy of p 
with increasing T. It is known that something like this is also observed in other 
materials. For example, yttrium is an anisotropic metal with high absolute value of the 
resistivity. At high temperatures its resistivity saturates and the anisotropy of the 
resistivity vanishes (Zinovev et al 1975). This gives us reasons to believe that the 
phenomenon observed in WOe is a rather common one. 
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